Umrechnung alpha, Näherungslösung GHA 1

This commit is contained in:
2026-01-11 13:14:43 +01:00
parent 797afdfd6f
commit 4d5b6fcc3e
6 changed files with 205 additions and 71 deletions

View File

@@ -0,0 +1,63 @@
import numpy as np
from numpy import sin, cos, arcsin, arccos, arctan2
from ellipsoide import EllipsoidTriaxial
import matplotlib.pyplot as plt
from panou import louville_constant, func_sigma_ell, gha1_ana
import plotly.graph_objects as go
import winkelumrechnungen as wu
def gha1(ell: EllipsoidTriaxial, p0: np.ndarray, alpha0: float, s: float, ds: int):
l0 = louville_constant(ell, p0, alpha0)
points = [p0]
alphas = [alpha0]
s_curr = 0.0
while s_curr < s:
ds_step = min(ds, s - s_curr)
if ds_step < 1e-8:
break
p1 = points[-1]
alpha1 = alphas[-1]
x1, y1, z1 = p1
sigma = func_sigma_ell(ell, x1, y1, z1, alpha1)
p2 = p1 + ds_step * sigma
p2, _, _, _ = ell.cartonell(p2)
ds_step = np.linalg.norm(p2 - p1)
points.append(p2)
dalpha = 1e-6
l2 = louville_constant(ell, p2, alpha1)
dl_dalpha = (louville_constant(ell, p2, alpha1+dalpha) - l2) / dalpha
alpha2 = alpha1 + (l0 - l2) / dl_dalpha
alphas.append(alpha2)
s_curr += ds_step
return points[-1], alphas[-1], np.array(points)
def show_points(points, p0, p1):
fig = go.Figure()
fig.add_scatter3d(x=points[:, 0], y=points[:, 1], z=points[:, 2],
mode='lines', line=dict(color="red", width=3), name="Approx")
fig.add_scatter3d(x=[p0[0]], y=[p0[1]], z=[p0[2]],
mode='markers', marker=dict(color="green"), name="P0")
fig.add_scatter3d(x=[p1[0]], y=[p1[1]], z=[p1[2]],
mode='markers', marker=dict(color="green"), name="P1")
fig.update_layout(
scene=dict(xaxis_title='X [km]',
yaxis_title='Y [km]',
zaxis_title='Z [km]',
aspectmode='data'),
title="CHAMP")
fig.show()
if __name__ == '__main__':
ell = EllipsoidTriaxial.init_name("BursaSima1980round")
P0 = ell.para2cart(0, 0)
alpha0 = wu.deg2rad(90)
s = 1000000
P1_ana, alpha1_ana = gha1_ana(ell, P0, alpha0, s, 60, maxPartCircum=32)
P1_app, alpha1_app, points = gha1(ell, P0, alpha0, s, 5000)
show_points(points, P0, P1_ana)
print(np.linalg.norm(P1_app - P1_ana))

View File

@@ -16,7 +16,7 @@ def get_random_examples(num):
:param num:
:return:
"""
random.seed(42)
# random.seed(42)
with open("Karney_2024_Testset.txt") as datei:
lines = datei.readlines()
examples = []

View File

@@ -68,7 +68,7 @@ def buildODE(ell: EllipsoidTriaxial) -> Callable:
return np.array([dxds, ddx, dyds, ddy, dzds, ddz])
return ODE
def gha1_num(ell: EllipsoidTriaxial, point: np.ndarray, alpha0: float, s: float, num: int) -> tuple[np.ndarray, float]:
def gha1_num(ell: EllipsoidTriaxial, point: np.ndarray, alpha0: float, s: float, num: int) -> tuple[np.ndarray, float, list]:
"""
Panou, Korakitits 2019
:param ell:
@@ -95,15 +95,15 @@ def gha1_num(ell: EllipsoidTriaxial, point: np.ndarray, alpha0: float, s: float,
p1, q1 = pq_ell(ell, x1, y1, z1)
sigma = np.array([dx1ds, dy1ds, dz1ds])
P = p1 @ sigma
Q = q1 @ sigma
P = float(p1 @ sigma)
Q = float(q1 @ sigma)
alpha1 = arctan2(P, Q)
if alpha1 < 0:
alpha1 += 2 * np.pi
return np.array([x1, y1, z1]), alpha1
return np.array([x1, y1, z1]), alpha1, werte
# ---------------------------------------------------------------------------------------------------------------------
@@ -225,8 +225,8 @@ def gha1_ana_step(ell: ellipsoide.EllipsoidTriaxial, point, alpha0, s, maxM):
# 52-53
sigma = np.array([dx_s, dy_s, dz_s])
P = p_s @ sigma
Q = q_s @ sigma
P = float(p_s @ sigma)
Q = float(q_s @ sigma)
# 51
alpha1 = arctan2(P, Q)
@@ -237,7 +237,7 @@ def gha1_ana_step(ell: ellipsoide.EllipsoidTriaxial, point, alpha0, s, maxM):
return np.array([x_s, y_s, z_s]), alpha1
def gha1_ana(ell: EllipsoidTriaxial, point: np.ndarray, alpha0: float, s: float, maxM: int, maxPartCircum: int = 4):
def gha1_ana(ell: EllipsoidTriaxial, point: np.ndarray, alpha0: float, s: float, maxM: int, maxPartCircum: int = 4) -> tuple[np.ndarray, float]:
if s > np.pi / maxPartCircum * ell.ax:
s /= 2
point_step, alpha_step = gha1_ana(ell, point, alpha0, s, maxM, maxPartCircum)
@@ -251,39 +251,103 @@ def gha1_ana(ell: EllipsoidTriaxial, point: np.ndarray, alpha0: float, s: float,
return point_end, alpha_end
def alpha_para2ell(ell: EllipsoidTriaxial, u: float, v: float, alpha_para: float) -> tuple[float, float, float]:
x, y, z = ell.para2cart(u, v)
beta, lamb = ell.para2ell(u, v)
p_para, q_para = pq_para(ell, x, y, z)
sigma_para = p_para * sin(alpha_para) + q_para * cos(alpha_para)
p_ell, q_ell = pq_ell(ell, x, y, z)
alpha_ell = arctan2(p_ell @ sigma_para, q_ell @ sigma_para)
sigma_ell = p_ell * sin(alpha_ell) + q_ell * cos(alpha_ell)
if np.linalg.norm(sigma_para - sigma_ell) > 1e-12:
raise Exception("Alpha Umrechnung fehlgeschlagen")
return beta, lamb, alpha_ell
def alpha_ell2para(ell: EllipsoidTriaxial, beta: float, lamb: float, alpha_ell: float) -> tuple[float, float, float]:
x, y, z = ell.ell2cart(beta, lamb)
u, v = ell.ell2para(beta, lamb)
p_ell, q_ell = pq_ell(ell, x, y, z)
sigma_ell = p_ell * sin(alpha_ell) + q_ell * cos(alpha_ell)
p_para, q_para = pq_para(ell, x, y, z)
alpha_para = arctan2(p_para @ sigma_ell, q_para @ sigma_ell)
sigma_para = p_para * sin(alpha_para) + q_para * cos(alpha_para)
if np.linalg.norm(sigma_para - sigma_ell) > 1e-12:
raise Exception("Alpha Umrechnung fehlgeschlagen")
print("Alpha Umrechnung fehlgeschlagen:", np.linalg.norm(sigma_para - sigma_ell))
return u, v, alpha_para
def func_sigma_ell(ell, x, y, z, alpha):
p, q = pq_ell(ell, x, y, z)
sigma = p * sin(alpha) + q * cos(alpha)
return sigma
def func_sigma_para(ell, x, y, z, alpha):
p, q = pq_para(ell, x, y, z)
sigma = p * sin(alpha) + q * cos(alpha)
return sigma
def louville_constant(ell: EllipsoidTriaxial, p0: np.ndarray, alpha: float) -> float:
beta, lamb = ell.cart2ell(p0)
l = ell.Ey**2 * cos(beta)**2 * sin(alpha)**2 - ell.Ee**2 * sin(lamb)**2 * cos(alpha)**2
# x, y, z = p0
# t1, t2 = ell.func_t12(x, y, z)
# l_cart = ell.ay**2 - (t1 * sin(alpha)**2 + t2 * cos(alpha)**2)
# if abs(l - l_cart) > 1e-12:
# # raise Exception("Louville constant fehlgeschlagen")
# print("Diff zwischen constant:", abs(l - l_cart))
return l
def louville_l2c(ell, l):
return sqrt((l + ell.Ee**2) / ell.Ex**2)
def louville_c2l(ell, c):
return ell.Ex**2 * c**2 - ell.Ee**2
if __name__ == "__main__":
ell = ellipsoide.EllipsoidTriaxial.init_name("BursaSima1980round")
diffs_panou = []
examples_panou = ne_panou.get_random_examples(5)
for example in examples_panou:
beta0, lamb0, beta1, lamb1, _, alpha0, alpha1, s = example
P0 = ell.ell2cart(beta0, lamb0)
P1_num, alpha1_num = gha1_num(ell, P0, alpha0, s, 100)
beta1_num, lamb1_num = ell.cart2ell(P1_num)
P1_ana, alpha1_ana = gha1_ana(ell, P0, alpha0, s, 60)
beta1_ana, lamb1_ana = ell.cart2ell(P1_ana)
diffs_panou.append((abs(beta1-beta1_num), abs(lamb1-lamb1_num), abs(beta1-beta1_ana), abs(lamb1-lamb1_ana)))
diffs_panou = np.array(diffs_panou)
mask_360 = (diffs_panou > 359) & (diffs_panou < 361)
diffs_panou[mask_360] = np.abs(diffs_panou[mask_360] - 360)
print(diffs_panou)
# ell = ellipsoide.EllipsoidTriaxial.init_name("BursaSima1980round")
# diffs_panou = []
# examples_panou = ne_panou.get_random_examples(5)
# for example in examples_panou:
# beta0, lamb0, beta1, lamb1, _, alpha0_ell, alpha1_ell, s = example
# P0 = ell.ell2cart(beta0, lamb0)
#
# P1_num, alpha1_num, _ = gha1_num(ell, P0, alpha0_ell, s, 100)
# beta1_num, lamb1_num = ell.cart2ell(P1_num)
#
# _, _, alpha0_para = alpha_ell2para(ell, beta0, lamb0, alpha0_ell)
# P1_ana, alpha1_ana = gha1_ana(ell, P0, alpha0_para, s, 60)
# beta1_ana, lamb1_ana = ell.cart2ell(P1_ana)
# diffs_panou.append((abs(beta1-beta1_num), abs(lamb1-lamb1_num), abs(beta1-beta1_ana), abs(lamb1-lamb1_ana)))
# diffs_panou = np.array(diffs_panou)
# mask_360 = (diffs_panou > 359) & (diffs_panou < 361)
# diffs_panou[mask_360] = np.abs(diffs_panou[mask_360] - 360)
# print(diffs_panou)
ell = ellipsoide.EllipsoidTriaxial.init_name("KarneyTest2024")
diffs_karney = []
examples_karney = ne_karney.get_examples((30499, 30500, 40500))
# examples_karney = ne_karney.get_random_examples(5)
# examples_karney = ne_karney.get_examples((30499, 30500, 40500))
examples_karney = ne_karney.get_random_examples(20)
for example in examples_karney:
beta0, lamb0, alpha0, beta1, lamb1, alpha1, s = example
beta0, lamb0, alpha0_ell, beta1, lamb1, alpha1_ell, s = example
P0 = ell.ell2cart(beta0, lamb0)
P1_num, alpha1_num = gha1_num(ell, P0, alpha0, s, 100)
P1_num, alpha1_num, _ = gha1_num(ell, P0, alpha0_ell, s, 5000)
beta1_num, lamb1_num = ell.cart2ell(P1_num)
try:
P1_ana, alpha1_ana = gha1_ana(ell, P0, alpha0, s, 40)
_, _, alpha0_para = alpha_ell2para(ell, beta0, lamb0, alpha0_ell)
P1_ana, alpha1_ana = gha1_ana(ell, P0, alpha0_para, s, 30, maxPartCircum=16)
beta1_ana, lamb1_ana = ell.cart2ell(P1_ana)
except:
beta1_ana, lamb1_ana = np.inf, np.inf
@@ -293,4 +357,5 @@ if __name__ == "__main__":
mask_360 = (diffs_karney > 359) & (diffs_karney < 361)
diffs_karney[mask_360] = np.abs(diffs_karney[mask_360] - 360)
print(diffs_karney)
pass

View File

@@ -244,7 +244,7 @@ def gha2_num(ell: EllipsoidTriaxial, beta_1, lamb_1, beta_2, lamb_2, n=16000, ep
+ (ell.Ee**2 / ell.Ex**2) * np.cos(lamb0) ** 2 * np.cos(alpha_1) ** 2
)
return alpha_1, alpha_2, s
return alpha_1, alpha_2, s, beta_arr, lamb_arr
if lamb_1 == lamb_2:
@@ -252,7 +252,7 @@ def gha2_num(ell: EllipsoidTriaxial, beta_1, lamb_1, beta_2, lamb_2, n=16000, ep
dbeta = beta_2 - beta_1
if abs(dbeta) < 10**-15:
return 0, 0, 0
return 0, 0, 0, np.array([]), np.array([])
lamb_0 = 0
@@ -369,7 +369,7 @@ def gha2_num(ell: EllipsoidTriaxial, beta_1, lamb_1, beta_2, lamb_2, n=16000, ep
else:
s = np.trapz(integrand, dx=h)
return alpha_1, alpha_2, s
return alpha_1, alpha_2, s, beta_arr, lamb_arr
if __name__ == "__main__":
@@ -391,35 +391,37 @@ if __name__ == "__main__":
# print(s)
ell = EllipsoidTriaxial.init_name("BursaSima1980round")
diffs_panou = []
examples_panou = ne_panou.get_random_examples(4)
for example in examples_panou:
beta0, lamb0, beta1, lamb1, _, alpha0, alpha1, s = example
P0 = ell.ell2cart(beta0, lamb0)
try:
alpha0_num, alpha1_num, s_num = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=4000, iter_max=10)
diffs_panou.append(
(wu.rad2deg(abs(alpha0 - alpha0_num)), wu.rad2deg(abs(alpha1 - alpha1_num)), abs(s - s_num)))
except:
print(f"Fehler für {beta0}, {lamb0}, {beta1}, {lamb1}")
diffs_panou = np.array(diffs_panou)
print(diffs_panou)
# ell = EllipsoidTriaxial.init_name("BursaSima1980round")
# diffs_panou = []
# examples_panou = ne_panou.get_random_examples(4)
# for example in examples_panou:
# beta0, lamb0, beta1, lamb1, _, alpha0, alpha1, s = example
# P0 = ell.ell2cart(beta0, lamb0)
# try:
# alpha0_num, alpha1_num, s_num = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=4000, iter_max=10)
# diffs_panou.append(
# (wu.rad2deg(abs(alpha0 - alpha0_num)), wu.rad2deg(abs(alpha1 - alpha1_num)), abs(s - s_num)))
# except:
# print(f"Fehler für {beta0}, {lamb0}, {beta1}, {lamb1}")
# diffs_panou = np.array(diffs_panou)
# print(diffs_panou)
#
# ell = EllipsoidTriaxial.init_name("KarneyTest2024")
# diffs_karney = []
# # examples_karney = ne_karney.get_examples((30500, 40500))
# examples_karney = ne_karney.get_random_examples(2)
# for example in examples_karney:
# beta0, lamb0, alpha0, beta1, lamb1, alpha1, s = example
#
# try:
# alpha0_num, alpha1_num, s_num = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=4000, iter_max=10)
# diffs_karney.append((wu.rad2deg(abs(alpha0-alpha0_num)), wu.rad2deg(abs(alpha1-alpha1_num)), abs(s-s_num)))
# except:
# print(f"Fehler für {beta0}, {lamb0}, {beta1}, {lamb1}")
# diffs_karney = np.array(diffs_karney)
# print(diffs_karney)
ell = EllipsoidTriaxial.init_name("KarneyTest2024")
diffs_karney = []
# examples_karney = ne_karney.get_examples((30500, 40500))
examples_karney = ne_karney.get_random_examples(2)
for example in examples_karney:
beta0, lamb0, alpha0, beta1, lamb1, alpha1, s = example
try:
alpha0_num, alpha1_num, s_num = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=4000, iter_max=10)
diffs_karney.append((wu.rad2deg(abs(alpha0-alpha0_num)), wu.rad2deg(abs(alpha1-alpha1_num)), abs(s-s_num)))
except:
print(f"Fehler für {beta0}, {lamb0}, {beta1}, {lamb1}")
diffs_karney = np.array(diffs_karney)
print(diffs_karney)
pass

View File

@@ -413,7 +413,7 @@ def calc_and_plot(n1, n2,
if "analytisch" in method1:
# ana
x2, y2, z2 = gha1_ana(ell, p1, alpha_rad, s_val, 70)
(x2, y2, z2), alpha2 = gha1_ana(ell, p1, alpha_rad, s_val, 70)
p2_ana = (float(x2), float(y2), float(z2))
beta2, lamb2 = ell.cart2ell([x2, y2, z2])
@@ -430,7 +430,7 @@ def calc_and_plot(n1, n2,
if "numerisch" in method1:
# num
x1, y1, z1, werte = gha1_num(ell, p1, alpha_rad, s_val, 10000)
(x1, y1, z1), alpha1, werte = gha1_num(ell, p1, alpha_rad, s_val, 10000)
p2_num = x1, y1, z1
beta2_num, lamb2_num = ell.cart2ell(p2_num)

View File

@@ -173,6 +173,17 @@ class EllipsoidTriaxial:
y / ((1 - self.ee ** 2) * sqrtH),
z / ((1 - self.ex ** 2) * sqrtH)])
def func_t12(self, x, y, z):
c1 = x ** 2 + y ** 2 + z ** 2 - (self.ax ** 2 + self.ay ** 2 + self.b ** 2)
c0 = (self.ax ** 2 * self.ay ** 2 + self.ax ** 2 * self.b ** 2 + self.ay ** 2 * self.b ** 2 -
(self.ay ** 2 + self.b ** 2) * x ** 2 - (self.ax ** 2 + self.b ** 2) * y ** 2 - (
self.ax ** 2 + self.ay ** 2) * z ** 2)
t2 = (-c1 + sqrt(c1 ** 2 - 4 * c0)) / 2
if t2 == 0:
t2 = 1e-18
t1 = c0 / t2
return t1, t2
def ellu2cart(self, beta: float, lamb: float, u: float) -> np.ndarray:
"""
Panou 2014 12ff.
@@ -360,14 +371,7 @@ class EllipsoidTriaxial:
# ---- Allgemeiner Fall -----
c1 = x ** 2 + y ** 2 + z ** 2 - (self.ax ** 2 + self.ay ** 2 + self.b ** 2)
c0 = (self.ax ** 2 * self.ay ** 2 + self.ax ** 2 * self.b ** 2 + self.ay ** 2 * self.b ** 2 -
(self.ay ** 2 + self.b ** 2) * x ** 2 - (self.ax ** 2 + self.b ** 2) * y ** 2 - (
self.ax ** 2 + self.ay ** 2) * z ** 2)
t2 = (-c1 + sqrt(c1 ** 2 - 4 * c0)) / 2
if t2 == 0:
t2 = 1e-14
t1 = c0 / t2
t1, t2 = self.func_t12(x, y, z)
num_beta = max(t1 - self.b ** 2, 0)
den_beta = max(self.ay ** 2 - t1, 0)