Umrechnung alpha, Näherungslösung GHA 1
This commit is contained in:
63
GHA_triaxial/approx_gha1.py
Normal file
63
GHA_triaxial/approx_gha1.py
Normal file
@@ -0,0 +1,63 @@
|
|||||||
|
import numpy as np
|
||||||
|
from numpy import sin, cos, arcsin, arccos, arctan2
|
||||||
|
from ellipsoide import EllipsoidTriaxial
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
from panou import louville_constant, func_sigma_ell, gha1_ana
|
||||||
|
import plotly.graph_objects as go
|
||||||
|
import winkelumrechnungen as wu
|
||||||
|
|
||||||
|
def gha1(ell: EllipsoidTriaxial, p0: np.ndarray, alpha0: float, s: float, ds: int):
|
||||||
|
l0 = louville_constant(ell, p0, alpha0)
|
||||||
|
points = [p0]
|
||||||
|
alphas = [alpha0]
|
||||||
|
s_curr = 0.0
|
||||||
|
while s_curr < s:
|
||||||
|
ds_step = min(ds, s - s_curr)
|
||||||
|
if ds_step < 1e-8:
|
||||||
|
break
|
||||||
|
p1 = points[-1]
|
||||||
|
alpha1 = alphas[-1]
|
||||||
|
x1, y1, z1 = p1
|
||||||
|
sigma = func_sigma_ell(ell, x1, y1, z1, alpha1)
|
||||||
|
p2 = p1 + ds_step * sigma
|
||||||
|
p2, _, _, _ = ell.cartonell(p2)
|
||||||
|
ds_step = np.linalg.norm(p2 - p1)
|
||||||
|
|
||||||
|
points.append(p2)
|
||||||
|
dalpha = 1e-6
|
||||||
|
l2 = louville_constant(ell, p2, alpha1)
|
||||||
|
dl_dalpha = (louville_constant(ell, p2, alpha1+dalpha) - l2) / dalpha
|
||||||
|
alpha2 = alpha1 + (l0 - l2) / dl_dalpha
|
||||||
|
alphas.append(alpha2)
|
||||||
|
s_curr += ds_step
|
||||||
|
return points[-1], alphas[-1], np.array(points)
|
||||||
|
|
||||||
|
def show_points(points, p0, p1):
|
||||||
|
fig = go.Figure()
|
||||||
|
|
||||||
|
fig.add_scatter3d(x=points[:, 0], y=points[:, 1], z=points[:, 2],
|
||||||
|
mode='lines', line=dict(color="red", width=3), name="Approx")
|
||||||
|
fig.add_scatter3d(x=[p0[0]], y=[p0[1]], z=[p0[2]],
|
||||||
|
mode='markers', marker=dict(color="green"), name="P0")
|
||||||
|
fig.add_scatter3d(x=[p1[0]], y=[p1[1]], z=[p1[2]],
|
||||||
|
mode='markers', marker=dict(color="green"), name="P1")
|
||||||
|
|
||||||
|
fig.update_layout(
|
||||||
|
scene=dict(xaxis_title='X [km]',
|
||||||
|
yaxis_title='Y [km]',
|
||||||
|
zaxis_title='Z [km]',
|
||||||
|
aspectmode='data'),
|
||||||
|
title="CHAMP")
|
||||||
|
|
||||||
|
fig.show()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
ell = EllipsoidTriaxial.init_name("BursaSima1980round")
|
||||||
|
P0 = ell.para2cart(0, 0)
|
||||||
|
alpha0 = wu.deg2rad(90)
|
||||||
|
s = 1000000
|
||||||
|
P1_ana, alpha1_ana = gha1_ana(ell, P0, alpha0, s, 60, maxPartCircum=32)
|
||||||
|
P1_app, alpha1_app, points = gha1(ell, P0, alpha0, s, 5000)
|
||||||
|
show_points(points, P0, P1_ana)
|
||||||
|
print(np.linalg.norm(P1_app - P1_ana))
|
||||||
@@ -16,7 +16,7 @@ def get_random_examples(num):
|
|||||||
:param num:
|
:param num:
|
||||||
:return:
|
:return:
|
||||||
"""
|
"""
|
||||||
random.seed(42)
|
# random.seed(42)
|
||||||
with open("Karney_2024_Testset.txt") as datei:
|
with open("Karney_2024_Testset.txt") as datei:
|
||||||
lines = datei.readlines()
|
lines = datei.readlines()
|
||||||
examples = []
|
examples = []
|
||||||
|
|||||||
@@ -68,7 +68,7 @@ def buildODE(ell: EllipsoidTriaxial) -> Callable:
|
|||||||
return np.array([dxds, ddx, dyds, ddy, dzds, ddz])
|
return np.array([dxds, ddx, dyds, ddy, dzds, ddz])
|
||||||
return ODE
|
return ODE
|
||||||
|
|
||||||
def gha1_num(ell: EllipsoidTriaxial, point: np.ndarray, alpha0: float, s: float, num: int) -> tuple[np.ndarray, float]:
|
def gha1_num(ell: EllipsoidTriaxial, point: np.ndarray, alpha0: float, s: float, num: int) -> tuple[np.ndarray, float, list]:
|
||||||
"""
|
"""
|
||||||
Panou, Korakitits 2019
|
Panou, Korakitits 2019
|
||||||
:param ell:
|
:param ell:
|
||||||
@@ -95,15 +95,15 @@ def gha1_num(ell: EllipsoidTriaxial, point: np.ndarray, alpha0: float, s: float,
|
|||||||
|
|
||||||
p1, q1 = pq_ell(ell, x1, y1, z1)
|
p1, q1 = pq_ell(ell, x1, y1, z1)
|
||||||
sigma = np.array([dx1ds, dy1ds, dz1ds])
|
sigma = np.array([dx1ds, dy1ds, dz1ds])
|
||||||
P = p1 @ sigma
|
P = float(p1 @ sigma)
|
||||||
Q = q1 @ sigma
|
Q = float(q1 @ sigma)
|
||||||
|
|
||||||
alpha1 = arctan2(P, Q)
|
alpha1 = arctan2(P, Q)
|
||||||
|
|
||||||
if alpha1 < 0:
|
if alpha1 < 0:
|
||||||
alpha1 += 2 * np.pi
|
alpha1 += 2 * np.pi
|
||||||
|
|
||||||
return np.array([x1, y1, z1]), alpha1
|
return np.array([x1, y1, z1]), alpha1, werte
|
||||||
|
|
||||||
# ---------------------------------------------------------------------------------------------------------------------
|
# ---------------------------------------------------------------------------------------------------------------------
|
||||||
|
|
||||||
@@ -225,8 +225,8 @@ def gha1_ana_step(ell: ellipsoide.EllipsoidTriaxial, point, alpha0, s, maxM):
|
|||||||
|
|
||||||
# 52-53
|
# 52-53
|
||||||
sigma = np.array([dx_s, dy_s, dz_s])
|
sigma = np.array([dx_s, dy_s, dz_s])
|
||||||
P = p_s @ sigma
|
P = float(p_s @ sigma)
|
||||||
Q = q_s @ sigma
|
Q = float(q_s @ sigma)
|
||||||
|
|
||||||
# 51
|
# 51
|
||||||
alpha1 = arctan2(P, Q)
|
alpha1 = arctan2(P, Q)
|
||||||
@@ -237,7 +237,7 @@ def gha1_ana_step(ell: ellipsoide.EllipsoidTriaxial, point, alpha0, s, maxM):
|
|||||||
return np.array([x_s, y_s, z_s]), alpha1
|
return np.array([x_s, y_s, z_s]), alpha1
|
||||||
|
|
||||||
|
|
||||||
def gha1_ana(ell: EllipsoidTriaxial, point: np.ndarray, alpha0: float, s: float, maxM: int, maxPartCircum: int = 4):
|
def gha1_ana(ell: EllipsoidTriaxial, point: np.ndarray, alpha0: float, s: float, maxM: int, maxPartCircum: int = 4) -> tuple[np.ndarray, float]:
|
||||||
if s > np.pi / maxPartCircum * ell.ax:
|
if s > np.pi / maxPartCircum * ell.ax:
|
||||||
s /= 2
|
s /= 2
|
||||||
point_step, alpha_step = gha1_ana(ell, point, alpha0, s, maxM, maxPartCircum)
|
point_step, alpha_step = gha1_ana(ell, point, alpha0, s, maxM, maxPartCircum)
|
||||||
@@ -251,39 +251,103 @@ def gha1_ana(ell: EllipsoidTriaxial, point: np.ndarray, alpha0: float, s: float,
|
|||||||
|
|
||||||
return point_end, alpha_end
|
return point_end, alpha_end
|
||||||
|
|
||||||
|
def alpha_para2ell(ell: EllipsoidTriaxial, u: float, v: float, alpha_para: float) -> tuple[float, float, float]:
|
||||||
|
x, y, z = ell.para2cart(u, v)
|
||||||
|
beta, lamb = ell.para2ell(u, v)
|
||||||
|
|
||||||
|
p_para, q_para = pq_para(ell, x, y, z)
|
||||||
|
sigma_para = p_para * sin(alpha_para) + q_para * cos(alpha_para)
|
||||||
|
|
||||||
|
p_ell, q_ell = pq_ell(ell, x, y, z)
|
||||||
|
alpha_ell = arctan2(p_ell @ sigma_para, q_ell @ sigma_para)
|
||||||
|
sigma_ell = p_ell * sin(alpha_ell) + q_ell * cos(alpha_ell)
|
||||||
|
|
||||||
|
if np.linalg.norm(sigma_para - sigma_ell) > 1e-12:
|
||||||
|
raise Exception("Alpha Umrechnung fehlgeschlagen")
|
||||||
|
|
||||||
|
return beta, lamb, alpha_ell
|
||||||
|
|
||||||
|
def alpha_ell2para(ell: EllipsoidTriaxial, beta: float, lamb: float, alpha_ell: float) -> tuple[float, float, float]:
|
||||||
|
x, y, z = ell.ell2cart(beta, lamb)
|
||||||
|
u, v = ell.ell2para(beta, lamb)
|
||||||
|
|
||||||
|
p_ell, q_ell = pq_ell(ell, x, y, z)
|
||||||
|
sigma_ell = p_ell * sin(alpha_ell) + q_ell * cos(alpha_ell)
|
||||||
|
|
||||||
|
p_para, q_para = pq_para(ell, x, y, z)
|
||||||
|
alpha_para = arctan2(p_para @ sigma_ell, q_para @ sigma_ell)
|
||||||
|
sigma_para = p_para * sin(alpha_para) + q_para * cos(alpha_para)
|
||||||
|
|
||||||
|
if np.linalg.norm(sigma_para - sigma_ell) > 1e-12:
|
||||||
|
raise Exception("Alpha Umrechnung fehlgeschlagen")
|
||||||
|
print("Alpha Umrechnung fehlgeschlagen:", np.linalg.norm(sigma_para - sigma_ell))
|
||||||
|
|
||||||
|
return u, v, alpha_para
|
||||||
|
|
||||||
|
def func_sigma_ell(ell, x, y, z, alpha):
|
||||||
|
p, q = pq_ell(ell, x, y, z)
|
||||||
|
sigma = p * sin(alpha) + q * cos(alpha)
|
||||||
|
return sigma
|
||||||
|
|
||||||
|
def func_sigma_para(ell, x, y, z, alpha):
|
||||||
|
p, q = pq_para(ell, x, y, z)
|
||||||
|
sigma = p * sin(alpha) + q * cos(alpha)
|
||||||
|
return sigma
|
||||||
|
|
||||||
|
|
||||||
|
def louville_constant(ell: EllipsoidTriaxial, p0: np.ndarray, alpha: float) -> float:
|
||||||
|
beta, lamb = ell.cart2ell(p0)
|
||||||
|
l = ell.Ey**2 * cos(beta)**2 * sin(alpha)**2 - ell.Ee**2 * sin(lamb)**2 * cos(alpha)**2
|
||||||
|
# x, y, z = p0
|
||||||
|
# t1, t2 = ell.func_t12(x, y, z)
|
||||||
|
# l_cart = ell.ay**2 - (t1 * sin(alpha)**2 + t2 * cos(alpha)**2)
|
||||||
|
# if abs(l - l_cart) > 1e-12:
|
||||||
|
# # raise Exception("Louville constant fehlgeschlagen")
|
||||||
|
# print("Diff zwischen constant:", abs(l - l_cart))
|
||||||
|
return l
|
||||||
|
|
||||||
|
def louville_l2c(ell, l):
|
||||||
|
return sqrt((l + ell.Ee**2) / ell.Ex**2)
|
||||||
|
|
||||||
|
def louville_c2l(ell, c):
|
||||||
|
return ell.Ex**2 * c**2 - ell.Ee**2
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
ell = ellipsoide.EllipsoidTriaxial.init_name("BursaSima1980round")
|
|
||||||
|
|
||||||
diffs_panou = []
|
# ell = ellipsoide.EllipsoidTriaxial.init_name("BursaSima1980round")
|
||||||
examples_panou = ne_panou.get_random_examples(5)
|
# diffs_panou = []
|
||||||
for example in examples_panou:
|
# examples_panou = ne_panou.get_random_examples(5)
|
||||||
beta0, lamb0, beta1, lamb1, _, alpha0, alpha1, s = example
|
# for example in examples_panou:
|
||||||
P0 = ell.ell2cart(beta0, lamb0)
|
# beta0, lamb0, beta1, lamb1, _, alpha0_ell, alpha1_ell, s = example
|
||||||
|
# P0 = ell.ell2cart(beta0, lamb0)
|
||||||
P1_num, alpha1_num = gha1_num(ell, P0, alpha0, s, 100)
|
#
|
||||||
beta1_num, lamb1_num = ell.cart2ell(P1_num)
|
# P1_num, alpha1_num, _ = gha1_num(ell, P0, alpha0_ell, s, 100)
|
||||||
P1_ana, alpha1_ana = gha1_ana(ell, P0, alpha0, s, 60)
|
# beta1_num, lamb1_num = ell.cart2ell(P1_num)
|
||||||
beta1_ana, lamb1_ana = ell.cart2ell(P1_ana)
|
#
|
||||||
diffs_panou.append((abs(beta1-beta1_num), abs(lamb1-lamb1_num), abs(beta1-beta1_ana), abs(lamb1-lamb1_ana)))
|
# _, _, alpha0_para = alpha_ell2para(ell, beta0, lamb0, alpha0_ell)
|
||||||
diffs_panou = np.array(diffs_panou)
|
# P1_ana, alpha1_ana = gha1_ana(ell, P0, alpha0_para, s, 60)
|
||||||
mask_360 = (diffs_panou > 359) & (diffs_panou < 361)
|
# beta1_ana, lamb1_ana = ell.cart2ell(P1_ana)
|
||||||
diffs_panou[mask_360] = np.abs(diffs_panou[mask_360] - 360)
|
# diffs_panou.append((abs(beta1-beta1_num), abs(lamb1-lamb1_num), abs(beta1-beta1_ana), abs(lamb1-lamb1_ana)))
|
||||||
print(diffs_panou)
|
# diffs_panou = np.array(diffs_panou)
|
||||||
|
# mask_360 = (diffs_panou > 359) & (diffs_panou < 361)
|
||||||
|
# diffs_panou[mask_360] = np.abs(diffs_panou[mask_360] - 360)
|
||||||
|
# print(diffs_panou)
|
||||||
|
|
||||||
ell = ellipsoide.EllipsoidTriaxial.init_name("KarneyTest2024")
|
ell = ellipsoide.EllipsoidTriaxial.init_name("KarneyTest2024")
|
||||||
|
|
||||||
diffs_karney = []
|
diffs_karney = []
|
||||||
examples_karney = ne_karney.get_examples((30499, 30500, 40500))
|
# examples_karney = ne_karney.get_examples((30499, 30500, 40500))
|
||||||
# examples_karney = ne_karney.get_random_examples(5)
|
examples_karney = ne_karney.get_random_examples(20)
|
||||||
for example in examples_karney:
|
for example in examples_karney:
|
||||||
beta0, lamb0, alpha0, beta1, lamb1, alpha1, s = example
|
beta0, lamb0, alpha0_ell, beta1, lamb1, alpha1_ell, s = example
|
||||||
P0 = ell.ell2cart(beta0, lamb0)
|
P0 = ell.ell2cart(beta0, lamb0)
|
||||||
|
|
||||||
P1_num, alpha1_num = gha1_num(ell, P0, alpha0, s, 100)
|
P1_num, alpha1_num, _ = gha1_num(ell, P0, alpha0_ell, s, 5000)
|
||||||
beta1_num, lamb1_num = ell.cart2ell(P1_num)
|
beta1_num, lamb1_num = ell.cart2ell(P1_num)
|
||||||
|
|
||||||
try:
|
try:
|
||||||
P1_ana, alpha1_ana = gha1_ana(ell, P0, alpha0, s, 40)
|
_, _, alpha0_para = alpha_ell2para(ell, beta0, lamb0, alpha0_ell)
|
||||||
|
P1_ana, alpha1_ana = gha1_ana(ell, P0, alpha0_para, s, 30, maxPartCircum=16)
|
||||||
beta1_ana, lamb1_ana = ell.cart2ell(P1_ana)
|
beta1_ana, lamb1_ana = ell.cart2ell(P1_ana)
|
||||||
except:
|
except:
|
||||||
beta1_ana, lamb1_ana = np.inf, np.inf
|
beta1_ana, lamb1_ana = np.inf, np.inf
|
||||||
@@ -293,4 +357,5 @@ if __name__ == "__main__":
|
|||||||
mask_360 = (diffs_karney > 359) & (diffs_karney < 361)
|
mask_360 = (diffs_karney > 359) & (diffs_karney < 361)
|
||||||
diffs_karney[mask_360] = np.abs(diffs_karney[mask_360] - 360)
|
diffs_karney[mask_360] = np.abs(diffs_karney[mask_360] - 360)
|
||||||
print(diffs_karney)
|
print(diffs_karney)
|
||||||
|
|
||||||
pass
|
pass
|
||||||
@@ -244,7 +244,7 @@ def gha2_num(ell: EllipsoidTriaxial, beta_1, lamb_1, beta_2, lamb_2, n=16000, ep
|
|||||||
+ (ell.Ee**2 / ell.Ex**2) * np.cos(lamb0) ** 2 * np.cos(alpha_1) ** 2
|
+ (ell.Ee**2 / ell.Ex**2) * np.cos(lamb0) ** 2 * np.cos(alpha_1) ** 2
|
||||||
)
|
)
|
||||||
|
|
||||||
return alpha_1, alpha_2, s
|
return alpha_1, alpha_2, s, beta_arr, lamb_arr
|
||||||
|
|
||||||
if lamb_1 == lamb_2:
|
if lamb_1 == lamb_2:
|
||||||
|
|
||||||
@@ -252,7 +252,7 @@ def gha2_num(ell: EllipsoidTriaxial, beta_1, lamb_1, beta_2, lamb_2, n=16000, ep
|
|||||||
dbeta = beta_2 - beta_1
|
dbeta = beta_2 - beta_1
|
||||||
|
|
||||||
if abs(dbeta) < 10**-15:
|
if abs(dbeta) < 10**-15:
|
||||||
return 0, 0, 0
|
return 0, 0, 0, np.array([]), np.array([])
|
||||||
|
|
||||||
lamb_0 = 0
|
lamb_0 = 0
|
||||||
|
|
||||||
@@ -369,7 +369,7 @@ def gha2_num(ell: EllipsoidTriaxial, beta_1, lamb_1, beta_2, lamb_2, n=16000, ep
|
|||||||
else:
|
else:
|
||||||
s = np.trapz(integrand, dx=h)
|
s = np.trapz(integrand, dx=h)
|
||||||
|
|
||||||
return alpha_1, alpha_2, s
|
return alpha_1, alpha_2, s, beta_arr, lamb_arr
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
@@ -391,35 +391,37 @@ if __name__ == "__main__":
|
|||||||
# print(s)
|
# print(s)
|
||||||
|
|
||||||
|
|
||||||
ell = EllipsoidTriaxial.init_name("BursaSima1980round")
|
# ell = EllipsoidTriaxial.init_name("BursaSima1980round")
|
||||||
diffs_panou = []
|
# diffs_panou = []
|
||||||
examples_panou = ne_panou.get_random_examples(4)
|
# examples_panou = ne_panou.get_random_examples(4)
|
||||||
for example in examples_panou:
|
# for example in examples_panou:
|
||||||
beta0, lamb0, beta1, lamb1, _, alpha0, alpha1, s = example
|
# beta0, lamb0, beta1, lamb1, _, alpha0, alpha1, s = example
|
||||||
P0 = ell.ell2cart(beta0, lamb0)
|
# P0 = ell.ell2cart(beta0, lamb0)
|
||||||
try:
|
# try:
|
||||||
alpha0_num, alpha1_num, s_num = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=4000, iter_max=10)
|
# alpha0_num, alpha1_num, s_num = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=4000, iter_max=10)
|
||||||
diffs_panou.append(
|
# diffs_panou.append(
|
||||||
(wu.rad2deg(abs(alpha0 - alpha0_num)), wu.rad2deg(abs(alpha1 - alpha1_num)), abs(s - s_num)))
|
# (wu.rad2deg(abs(alpha0 - alpha0_num)), wu.rad2deg(abs(alpha1 - alpha1_num)), abs(s - s_num)))
|
||||||
except:
|
# except:
|
||||||
print(f"Fehler für {beta0}, {lamb0}, {beta1}, {lamb1}")
|
# print(f"Fehler für {beta0}, {lamb0}, {beta1}, {lamb1}")
|
||||||
diffs_panou = np.array(diffs_panou)
|
# diffs_panou = np.array(diffs_panou)
|
||||||
print(diffs_panou)
|
# print(diffs_panou)
|
||||||
|
#
|
||||||
|
# ell = EllipsoidTriaxial.init_name("KarneyTest2024")
|
||||||
|
# diffs_karney = []
|
||||||
|
# # examples_karney = ne_karney.get_examples((30500, 40500))
|
||||||
|
# examples_karney = ne_karney.get_random_examples(2)
|
||||||
|
# for example in examples_karney:
|
||||||
|
# beta0, lamb0, alpha0, beta1, lamb1, alpha1, s = example
|
||||||
|
#
|
||||||
|
# try:
|
||||||
|
# alpha0_num, alpha1_num, s_num = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=4000, iter_max=10)
|
||||||
|
# diffs_karney.append((wu.rad2deg(abs(alpha0-alpha0_num)), wu.rad2deg(abs(alpha1-alpha1_num)), abs(s-s_num)))
|
||||||
|
# except:
|
||||||
|
# print(f"Fehler für {beta0}, {lamb0}, {beta1}, {lamb1}")
|
||||||
|
# diffs_karney = np.array(diffs_karney)
|
||||||
|
# print(diffs_karney)
|
||||||
|
|
||||||
ell = EllipsoidTriaxial.init_name("KarneyTest2024")
|
|
||||||
diffs_karney = []
|
|
||||||
# examples_karney = ne_karney.get_examples((30500, 40500))
|
|
||||||
examples_karney = ne_karney.get_random_examples(2)
|
|
||||||
for example in examples_karney:
|
|
||||||
beta0, lamb0, alpha0, beta1, lamb1, alpha1, s = example
|
|
||||||
|
|
||||||
try:
|
|
||||||
alpha0_num, alpha1_num, s_num = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=4000, iter_max=10)
|
|
||||||
diffs_karney.append((wu.rad2deg(abs(alpha0-alpha0_num)), wu.rad2deg(abs(alpha1-alpha1_num)), abs(s-s_num)))
|
|
||||||
except:
|
|
||||||
print(f"Fehler für {beta0}, {lamb0}, {beta1}, {lamb1}")
|
|
||||||
diffs_karney = np.array(diffs_karney)
|
|
||||||
print(diffs_karney)
|
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -413,7 +413,7 @@ def calc_and_plot(n1, n2,
|
|||||||
|
|
||||||
if "analytisch" in method1:
|
if "analytisch" in method1:
|
||||||
# ana
|
# ana
|
||||||
x2, y2, z2 = gha1_ana(ell, p1, alpha_rad, s_val, 70)
|
(x2, y2, z2), alpha2 = gha1_ana(ell, p1, alpha_rad, s_val, 70)
|
||||||
p2_ana = (float(x2), float(y2), float(z2))
|
p2_ana = (float(x2), float(y2), float(z2))
|
||||||
beta2, lamb2 = ell.cart2ell([x2, y2, z2])
|
beta2, lamb2 = ell.cart2ell([x2, y2, z2])
|
||||||
|
|
||||||
@@ -430,7 +430,7 @@ def calc_and_plot(n1, n2,
|
|||||||
|
|
||||||
if "numerisch" in method1:
|
if "numerisch" in method1:
|
||||||
# num
|
# num
|
||||||
x1, y1, z1, werte = gha1_num(ell, p1, alpha_rad, s_val, 10000)
|
(x1, y1, z1), alpha1, werte = gha1_num(ell, p1, alpha_rad, s_val, 10000)
|
||||||
p2_num = x1, y1, z1
|
p2_num = x1, y1, z1
|
||||||
beta2_num, lamb2_num = ell.cart2ell(p2_num)
|
beta2_num, lamb2_num = ell.cart2ell(p2_num)
|
||||||
|
|
||||||
|
|||||||
@@ -173,6 +173,17 @@ class EllipsoidTriaxial:
|
|||||||
y / ((1 - self.ee ** 2) * sqrtH),
|
y / ((1 - self.ee ** 2) * sqrtH),
|
||||||
z / ((1 - self.ex ** 2) * sqrtH)])
|
z / ((1 - self.ex ** 2) * sqrtH)])
|
||||||
|
|
||||||
|
def func_t12(self, x, y, z):
|
||||||
|
c1 = x ** 2 + y ** 2 + z ** 2 - (self.ax ** 2 + self.ay ** 2 + self.b ** 2)
|
||||||
|
c0 = (self.ax ** 2 * self.ay ** 2 + self.ax ** 2 * self.b ** 2 + self.ay ** 2 * self.b ** 2 -
|
||||||
|
(self.ay ** 2 + self.b ** 2) * x ** 2 - (self.ax ** 2 + self.b ** 2) * y ** 2 - (
|
||||||
|
self.ax ** 2 + self.ay ** 2) * z ** 2)
|
||||||
|
t2 = (-c1 + sqrt(c1 ** 2 - 4 * c0)) / 2
|
||||||
|
if t2 == 0:
|
||||||
|
t2 = 1e-18
|
||||||
|
t1 = c0 / t2
|
||||||
|
return t1, t2
|
||||||
|
|
||||||
def ellu2cart(self, beta: float, lamb: float, u: float) -> np.ndarray:
|
def ellu2cart(self, beta: float, lamb: float, u: float) -> np.ndarray:
|
||||||
"""
|
"""
|
||||||
Panou 2014 12ff.
|
Panou 2014 12ff.
|
||||||
@@ -360,14 +371,7 @@ class EllipsoidTriaxial:
|
|||||||
|
|
||||||
# ---- Allgemeiner Fall -----
|
# ---- Allgemeiner Fall -----
|
||||||
|
|
||||||
c1 = x ** 2 + y ** 2 + z ** 2 - (self.ax ** 2 + self.ay ** 2 + self.b ** 2)
|
t1, t2 = self.func_t12(x, y, z)
|
||||||
c0 = (self.ax ** 2 * self.ay ** 2 + self.ax ** 2 * self.b ** 2 + self.ay ** 2 * self.b ** 2 -
|
|
||||||
(self.ay ** 2 + self.b ** 2) * x ** 2 - (self.ax ** 2 + self.b ** 2) * y ** 2 - (
|
|
||||||
self.ax ** 2 + self.ay ** 2) * z ** 2)
|
|
||||||
t2 = (-c1 + sqrt(c1 ** 2 - 4 * c0)) / 2
|
|
||||||
if t2 == 0:
|
|
||||||
t2 = 1e-14
|
|
||||||
t1 = c0 / t2
|
|
||||||
|
|
||||||
num_beta = max(t1 - self.b ** 2, 0)
|
num_beta = max(t1 - self.b ** 2, 0)
|
||||||
den_beta = max(self.ay ** 2 - t1, 0)
|
den_beta = max(self.ay ** 2 - t1, 0)
|
||||||
|
|||||||
Reference in New Issue
Block a user