Umrechnung alpha, Näherungslösung GHA 1

This commit is contained in:
2026-01-11 13:14:43 +01:00
parent 797afdfd6f
commit 4d5b6fcc3e
6 changed files with 205 additions and 71 deletions

View File

@@ -0,0 +1,63 @@
import numpy as np
from numpy import sin, cos, arcsin, arccos, arctan2
from ellipsoide import EllipsoidTriaxial
import matplotlib.pyplot as plt
from panou import louville_constant, func_sigma_ell, gha1_ana
import plotly.graph_objects as go
import winkelumrechnungen as wu
def gha1(ell: EllipsoidTriaxial, p0: np.ndarray, alpha0: float, s: float, ds: int):
l0 = louville_constant(ell, p0, alpha0)
points = [p0]
alphas = [alpha0]
s_curr = 0.0
while s_curr < s:
ds_step = min(ds, s - s_curr)
if ds_step < 1e-8:
break
p1 = points[-1]
alpha1 = alphas[-1]
x1, y1, z1 = p1
sigma = func_sigma_ell(ell, x1, y1, z1, alpha1)
p2 = p1 + ds_step * sigma
p2, _, _, _ = ell.cartonell(p2)
ds_step = np.linalg.norm(p2 - p1)
points.append(p2)
dalpha = 1e-6
l2 = louville_constant(ell, p2, alpha1)
dl_dalpha = (louville_constant(ell, p2, alpha1+dalpha) - l2) / dalpha
alpha2 = alpha1 + (l0 - l2) / dl_dalpha
alphas.append(alpha2)
s_curr += ds_step
return points[-1], alphas[-1], np.array(points)
def show_points(points, p0, p1):
fig = go.Figure()
fig.add_scatter3d(x=points[:, 0], y=points[:, 1], z=points[:, 2],
mode='lines', line=dict(color="red", width=3), name="Approx")
fig.add_scatter3d(x=[p0[0]], y=[p0[1]], z=[p0[2]],
mode='markers', marker=dict(color="green"), name="P0")
fig.add_scatter3d(x=[p1[0]], y=[p1[1]], z=[p1[2]],
mode='markers', marker=dict(color="green"), name="P1")
fig.update_layout(
scene=dict(xaxis_title='X [km]',
yaxis_title='Y [km]',
zaxis_title='Z [km]',
aspectmode='data'),
title="CHAMP")
fig.show()
if __name__ == '__main__':
ell = EllipsoidTriaxial.init_name("BursaSima1980round")
P0 = ell.para2cart(0, 0)
alpha0 = wu.deg2rad(90)
s = 1000000
P1_ana, alpha1_ana = gha1_ana(ell, P0, alpha0, s, 60, maxPartCircum=32)
P1_app, alpha1_app, points = gha1(ell, P0, alpha0, s, 5000)
show_points(points, P0, P1_ana)
print(np.linalg.norm(P1_app - P1_ana))