Umrechnung alpha, Näherungslösung GHA 1
This commit is contained in:
63
GHA_triaxial/approx_gha1.py
Normal file
63
GHA_triaxial/approx_gha1.py
Normal file
@@ -0,0 +1,63 @@
|
||||
import numpy as np
|
||||
from numpy import sin, cos, arcsin, arccos, arctan2
|
||||
from ellipsoide import EllipsoidTriaxial
|
||||
import matplotlib.pyplot as plt
|
||||
from panou import louville_constant, func_sigma_ell, gha1_ana
|
||||
import plotly.graph_objects as go
|
||||
import winkelumrechnungen as wu
|
||||
|
||||
def gha1(ell: EllipsoidTriaxial, p0: np.ndarray, alpha0: float, s: float, ds: int):
|
||||
l0 = louville_constant(ell, p0, alpha0)
|
||||
points = [p0]
|
||||
alphas = [alpha0]
|
||||
s_curr = 0.0
|
||||
while s_curr < s:
|
||||
ds_step = min(ds, s - s_curr)
|
||||
if ds_step < 1e-8:
|
||||
break
|
||||
p1 = points[-1]
|
||||
alpha1 = alphas[-1]
|
||||
x1, y1, z1 = p1
|
||||
sigma = func_sigma_ell(ell, x1, y1, z1, alpha1)
|
||||
p2 = p1 + ds_step * sigma
|
||||
p2, _, _, _ = ell.cartonell(p2)
|
||||
ds_step = np.linalg.norm(p2 - p1)
|
||||
|
||||
points.append(p2)
|
||||
dalpha = 1e-6
|
||||
l2 = louville_constant(ell, p2, alpha1)
|
||||
dl_dalpha = (louville_constant(ell, p2, alpha1+dalpha) - l2) / dalpha
|
||||
alpha2 = alpha1 + (l0 - l2) / dl_dalpha
|
||||
alphas.append(alpha2)
|
||||
s_curr += ds_step
|
||||
return points[-1], alphas[-1], np.array(points)
|
||||
|
||||
def show_points(points, p0, p1):
|
||||
fig = go.Figure()
|
||||
|
||||
fig.add_scatter3d(x=points[:, 0], y=points[:, 1], z=points[:, 2],
|
||||
mode='lines', line=dict(color="red", width=3), name="Approx")
|
||||
fig.add_scatter3d(x=[p0[0]], y=[p0[1]], z=[p0[2]],
|
||||
mode='markers', marker=dict(color="green"), name="P0")
|
||||
fig.add_scatter3d(x=[p1[0]], y=[p1[1]], z=[p1[2]],
|
||||
mode='markers', marker=dict(color="green"), name="P1")
|
||||
|
||||
fig.update_layout(
|
||||
scene=dict(xaxis_title='X [km]',
|
||||
yaxis_title='Y [km]',
|
||||
zaxis_title='Z [km]',
|
||||
aspectmode='data'),
|
||||
title="CHAMP")
|
||||
|
||||
fig.show()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
ell = EllipsoidTriaxial.init_name("BursaSima1980round")
|
||||
P0 = ell.para2cart(0, 0)
|
||||
alpha0 = wu.deg2rad(90)
|
||||
s = 1000000
|
||||
P1_ana, alpha1_ana = gha1_ana(ell, P0, alpha0, s, 60, maxPartCircum=32)
|
||||
P1_app, alpha1_app, points = gha1(ell, P0, alpha0, s, 5000)
|
||||
show_points(points, P0, P1_ana)
|
||||
print(np.linalg.norm(P1_app - P1_ana))
|
||||
@@ -16,7 +16,7 @@ def get_random_examples(num):
|
||||
:param num:
|
||||
:return:
|
||||
"""
|
||||
random.seed(42)
|
||||
# random.seed(42)
|
||||
with open("Karney_2024_Testset.txt") as datei:
|
||||
lines = datei.readlines()
|
||||
examples = []
|
||||
|
||||
@@ -68,7 +68,7 @@ def buildODE(ell: EllipsoidTriaxial) -> Callable:
|
||||
return np.array([dxds, ddx, dyds, ddy, dzds, ddz])
|
||||
return ODE
|
||||
|
||||
def gha1_num(ell: EllipsoidTriaxial, point: np.ndarray, alpha0: float, s: float, num: int) -> tuple[np.ndarray, float]:
|
||||
def gha1_num(ell: EllipsoidTriaxial, point: np.ndarray, alpha0: float, s: float, num: int) -> tuple[np.ndarray, float, list]:
|
||||
"""
|
||||
Panou, Korakitits 2019
|
||||
:param ell:
|
||||
@@ -95,15 +95,15 @@ def gha1_num(ell: EllipsoidTriaxial, point: np.ndarray, alpha0: float, s: float,
|
||||
|
||||
p1, q1 = pq_ell(ell, x1, y1, z1)
|
||||
sigma = np.array([dx1ds, dy1ds, dz1ds])
|
||||
P = p1 @ sigma
|
||||
Q = q1 @ sigma
|
||||
P = float(p1 @ sigma)
|
||||
Q = float(q1 @ sigma)
|
||||
|
||||
alpha1 = arctan2(P, Q)
|
||||
|
||||
if alpha1 < 0:
|
||||
alpha1 += 2 * np.pi
|
||||
|
||||
return np.array([x1, y1, z1]), alpha1
|
||||
return np.array([x1, y1, z1]), alpha1, werte
|
||||
|
||||
# ---------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
@@ -225,8 +225,8 @@ def gha1_ana_step(ell: ellipsoide.EllipsoidTriaxial, point, alpha0, s, maxM):
|
||||
|
||||
# 52-53
|
||||
sigma = np.array([dx_s, dy_s, dz_s])
|
||||
P = p_s @ sigma
|
||||
Q = q_s @ sigma
|
||||
P = float(p_s @ sigma)
|
||||
Q = float(q_s @ sigma)
|
||||
|
||||
# 51
|
||||
alpha1 = arctan2(P, Q)
|
||||
@@ -237,7 +237,7 @@ def gha1_ana_step(ell: ellipsoide.EllipsoidTriaxial, point, alpha0, s, maxM):
|
||||
return np.array([x_s, y_s, z_s]), alpha1
|
||||
|
||||
|
||||
def gha1_ana(ell: EllipsoidTriaxial, point: np.ndarray, alpha0: float, s: float, maxM: int, maxPartCircum: int = 4):
|
||||
def gha1_ana(ell: EllipsoidTriaxial, point: np.ndarray, alpha0: float, s: float, maxM: int, maxPartCircum: int = 4) -> tuple[np.ndarray, float]:
|
||||
if s > np.pi / maxPartCircum * ell.ax:
|
||||
s /= 2
|
||||
point_step, alpha_step = gha1_ana(ell, point, alpha0, s, maxM, maxPartCircum)
|
||||
@@ -251,39 +251,103 @@ def gha1_ana(ell: EllipsoidTriaxial, point: np.ndarray, alpha0: float, s: float,
|
||||
|
||||
return point_end, alpha_end
|
||||
|
||||
def alpha_para2ell(ell: EllipsoidTriaxial, u: float, v: float, alpha_para: float) -> tuple[float, float, float]:
|
||||
x, y, z = ell.para2cart(u, v)
|
||||
beta, lamb = ell.para2ell(u, v)
|
||||
|
||||
p_para, q_para = pq_para(ell, x, y, z)
|
||||
sigma_para = p_para * sin(alpha_para) + q_para * cos(alpha_para)
|
||||
|
||||
p_ell, q_ell = pq_ell(ell, x, y, z)
|
||||
alpha_ell = arctan2(p_ell @ sigma_para, q_ell @ sigma_para)
|
||||
sigma_ell = p_ell * sin(alpha_ell) + q_ell * cos(alpha_ell)
|
||||
|
||||
if np.linalg.norm(sigma_para - sigma_ell) > 1e-12:
|
||||
raise Exception("Alpha Umrechnung fehlgeschlagen")
|
||||
|
||||
return beta, lamb, alpha_ell
|
||||
|
||||
def alpha_ell2para(ell: EllipsoidTriaxial, beta: float, lamb: float, alpha_ell: float) -> tuple[float, float, float]:
|
||||
x, y, z = ell.ell2cart(beta, lamb)
|
||||
u, v = ell.ell2para(beta, lamb)
|
||||
|
||||
p_ell, q_ell = pq_ell(ell, x, y, z)
|
||||
sigma_ell = p_ell * sin(alpha_ell) + q_ell * cos(alpha_ell)
|
||||
|
||||
p_para, q_para = pq_para(ell, x, y, z)
|
||||
alpha_para = arctan2(p_para @ sigma_ell, q_para @ sigma_ell)
|
||||
sigma_para = p_para * sin(alpha_para) + q_para * cos(alpha_para)
|
||||
|
||||
if np.linalg.norm(sigma_para - sigma_ell) > 1e-12:
|
||||
raise Exception("Alpha Umrechnung fehlgeschlagen")
|
||||
print("Alpha Umrechnung fehlgeschlagen:", np.linalg.norm(sigma_para - sigma_ell))
|
||||
|
||||
return u, v, alpha_para
|
||||
|
||||
def func_sigma_ell(ell, x, y, z, alpha):
|
||||
p, q = pq_ell(ell, x, y, z)
|
||||
sigma = p * sin(alpha) + q * cos(alpha)
|
||||
return sigma
|
||||
|
||||
def func_sigma_para(ell, x, y, z, alpha):
|
||||
p, q = pq_para(ell, x, y, z)
|
||||
sigma = p * sin(alpha) + q * cos(alpha)
|
||||
return sigma
|
||||
|
||||
|
||||
def louville_constant(ell: EllipsoidTriaxial, p0: np.ndarray, alpha: float) -> float:
|
||||
beta, lamb = ell.cart2ell(p0)
|
||||
l = ell.Ey**2 * cos(beta)**2 * sin(alpha)**2 - ell.Ee**2 * sin(lamb)**2 * cos(alpha)**2
|
||||
# x, y, z = p0
|
||||
# t1, t2 = ell.func_t12(x, y, z)
|
||||
# l_cart = ell.ay**2 - (t1 * sin(alpha)**2 + t2 * cos(alpha)**2)
|
||||
# if abs(l - l_cart) > 1e-12:
|
||||
# # raise Exception("Louville constant fehlgeschlagen")
|
||||
# print("Diff zwischen constant:", abs(l - l_cart))
|
||||
return l
|
||||
|
||||
def louville_l2c(ell, l):
|
||||
return sqrt((l + ell.Ee**2) / ell.Ex**2)
|
||||
|
||||
def louville_c2l(ell, c):
|
||||
return ell.Ex**2 * c**2 - ell.Ee**2
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
ell = ellipsoide.EllipsoidTriaxial.init_name("BursaSima1980round")
|
||||
|
||||
diffs_panou = []
|
||||
examples_panou = ne_panou.get_random_examples(5)
|
||||
for example in examples_panou:
|
||||
beta0, lamb0, beta1, lamb1, _, alpha0, alpha1, s = example
|
||||
P0 = ell.ell2cart(beta0, lamb0)
|
||||
|
||||
P1_num, alpha1_num = gha1_num(ell, P0, alpha0, s, 100)
|
||||
beta1_num, lamb1_num = ell.cart2ell(P1_num)
|
||||
P1_ana, alpha1_ana = gha1_ana(ell, P0, alpha0, s, 60)
|
||||
beta1_ana, lamb1_ana = ell.cart2ell(P1_ana)
|
||||
diffs_panou.append((abs(beta1-beta1_num), abs(lamb1-lamb1_num), abs(beta1-beta1_ana), abs(lamb1-lamb1_ana)))
|
||||
diffs_panou = np.array(diffs_panou)
|
||||
mask_360 = (diffs_panou > 359) & (diffs_panou < 361)
|
||||
diffs_panou[mask_360] = np.abs(diffs_panou[mask_360] - 360)
|
||||
print(diffs_panou)
|
||||
# ell = ellipsoide.EllipsoidTriaxial.init_name("BursaSima1980round")
|
||||
# diffs_panou = []
|
||||
# examples_panou = ne_panou.get_random_examples(5)
|
||||
# for example in examples_panou:
|
||||
# beta0, lamb0, beta1, lamb1, _, alpha0_ell, alpha1_ell, s = example
|
||||
# P0 = ell.ell2cart(beta0, lamb0)
|
||||
#
|
||||
# P1_num, alpha1_num, _ = gha1_num(ell, P0, alpha0_ell, s, 100)
|
||||
# beta1_num, lamb1_num = ell.cart2ell(P1_num)
|
||||
#
|
||||
# _, _, alpha0_para = alpha_ell2para(ell, beta0, lamb0, alpha0_ell)
|
||||
# P1_ana, alpha1_ana = gha1_ana(ell, P0, alpha0_para, s, 60)
|
||||
# beta1_ana, lamb1_ana = ell.cart2ell(P1_ana)
|
||||
# diffs_panou.append((abs(beta1-beta1_num), abs(lamb1-lamb1_num), abs(beta1-beta1_ana), abs(lamb1-lamb1_ana)))
|
||||
# diffs_panou = np.array(diffs_panou)
|
||||
# mask_360 = (diffs_panou > 359) & (diffs_panou < 361)
|
||||
# diffs_panou[mask_360] = np.abs(diffs_panou[mask_360] - 360)
|
||||
# print(diffs_panou)
|
||||
|
||||
ell = ellipsoide.EllipsoidTriaxial.init_name("KarneyTest2024")
|
||||
|
||||
diffs_karney = []
|
||||
examples_karney = ne_karney.get_examples((30499, 30500, 40500))
|
||||
# examples_karney = ne_karney.get_random_examples(5)
|
||||
# examples_karney = ne_karney.get_examples((30499, 30500, 40500))
|
||||
examples_karney = ne_karney.get_random_examples(20)
|
||||
for example in examples_karney:
|
||||
beta0, lamb0, alpha0, beta1, lamb1, alpha1, s = example
|
||||
beta0, lamb0, alpha0_ell, beta1, lamb1, alpha1_ell, s = example
|
||||
P0 = ell.ell2cart(beta0, lamb0)
|
||||
|
||||
P1_num, alpha1_num = gha1_num(ell, P0, alpha0, s, 100)
|
||||
P1_num, alpha1_num, _ = gha1_num(ell, P0, alpha0_ell, s, 5000)
|
||||
beta1_num, lamb1_num = ell.cart2ell(P1_num)
|
||||
|
||||
try:
|
||||
P1_ana, alpha1_ana = gha1_ana(ell, P0, alpha0, s, 40)
|
||||
_, _, alpha0_para = alpha_ell2para(ell, beta0, lamb0, alpha0_ell)
|
||||
P1_ana, alpha1_ana = gha1_ana(ell, P0, alpha0_para, s, 30, maxPartCircum=16)
|
||||
beta1_ana, lamb1_ana = ell.cart2ell(P1_ana)
|
||||
except:
|
||||
beta1_ana, lamb1_ana = np.inf, np.inf
|
||||
@@ -293,4 +357,5 @@ if __name__ == "__main__":
|
||||
mask_360 = (diffs_karney > 359) & (diffs_karney < 361)
|
||||
diffs_karney[mask_360] = np.abs(diffs_karney[mask_360] - 360)
|
||||
print(diffs_karney)
|
||||
pass
|
||||
|
||||
pass
|
||||
|
||||
@@ -244,7 +244,7 @@ def gha2_num(ell: EllipsoidTriaxial, beta_1, lamb_1, beta_2, lamb_2, n=16000, ep
|
||||
+ (ell.Ee**2 / ell.Ex**2) * np.cos(lamb0) ** 2 * np.cos(alpha_1) ** 2
|
||||
)
|
||||
|
||||
return alpha_1, alpha_2, s
|
||||
return alpha_1, alpha_2, s, beta_arr, lamb_arr
|
||||
|
||||
if lamb_1 == lamb_2:
|
||||
|
||||
@@ -252,7 +252,7 @@ def gha2_num(ell: EllipsoidTriaxial, beta_1, lamb_1, beta_2, lamb_2, n=16000, ep
|
||||
dbeta = beta_2 - beta_1
|
||||
|
||||
if abs(dbeta) < 10**-15:
|
||||
return 0, 0, 0
|
||||
return 0, 0, 0, np.array([]), np.array([])
|
||||
|
||||
lamb_0 = 0
|
||||
|
||||
@@ -369,7 +369,7 @@ def gha2_num(ell: EllipsoidTriaxial, beta_1, lamb_1, beta_2, lamb_2, n=16000, ep
|
||||
else:
|
||||
s = np.trapz(integrand, dx=h)
|
||||
|
||||
return alpha_1, alpha_2, s
|
||||
return alpha_1, alpha_2, s, beta_arr, lamb_arr
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
@@ -391,35 +391,37 @@ if __name__ == "__main__":
|
||||
# print(s)
|
||||
|
||||
|
||||
ell = EllipsoidTriaxial.init_name("BursaSima1980round")
|
||||
diffs_panou = []
|
||||
examples_panou = ne_panou.get_random_examples(4)
|
||||
for example in examples_panou:
|
||||
beta0, lamb0, beta1, lamb1, _, alpha0, alpha1, s = example
|
||||
P0 = ell.ell2cart(beta0, lamb0)
|
||||
try:
|
||||
alpha0_num, alpha1_num, s_num = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=4000, iter_max=10)
|
||||
diffs_panou.append(
|
||||
(wu.rad2deg(abs(alpha0 - alpha0_num)), wu.rad2deg(abs(alpha1 - alpha1_num)), abs(s - s_num)))
|
||||
except:
|
||||
print(f"Fehler für {beta0}, {lamb0}, {beta1}, {lamb1}")
|
||||
diffs_panou = np.array(diffs_panou)
|
||||
print(diffs_panou)
|
||||
# ell = EllipsoidTriaxial.init_name("BursaSima1980round")
|
||||
# diffs_panou = []
|
||||
# examples_panou = ne_panou.get_random_examples(4)
|
||||
# for example in examples_panou:
|
||||
# beta0, lamb0, beta1, lamb1, _, alpha0, alpha1, s = example
|
||||
# P0 = ell.ell2cart(beta0, lamb0)
|
||||
# try:
|
||||
# alpha0_num, alpha1_num, s_num = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=4000, iter_max=10)
|
||||
# diffs_panou.append(
|
||||
# (wu.rad2deg(abs(alpha0 - alpha0_num)), wu.rad2deg(abs(alpha1 - alpha1_num)), abs(s - s_num)))
|
||||
# except:
|
||||
# print(f"Fehler für {beta0}, {lamb0}, {beta1}, {lamb1}")
|
||||
# diffs_panou = np.array(diffs_panou)
|
||||
# print(diffs_panou)
|
||||
#
|
||||
# ell = EllipsoidTriaxial.init_name("KarneyTest2024")
|
||||
# diffs_karney = []
|
||||
# # examples_karney = ne_karney.get_examples((30500, 40500))
|
||||
# examples_karney = ne_karney.get_random_examples(2)
|
||||
# for example in examples_karney:
|
||||
# beta0, lamb0, alpha0, beta1, lamb1, alpha1, s = example
|
||||
#
|
||||
# try:
|
||||
# alpha0_num, alpha1_num, s_num = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=4000, iter_max=10)
|
||||
# diffs_karney.append((wu.rad2deg(abs(alpha0-alpha0_num)), wu.rad2deg(abs(alpha1-alpha1_num)), abs(s-s_num)))
|
||||
# except:
|
||||
# print(f"Fehler für {beta0}, {lamb0}, {beta1}, {lamb1}")
|
||||
# diffs_karney = np.array(diffs_karney)
|
||||
# print(diffs_karney)
|
||||
|
||||
ell = EllipsoidTriaxial.init_name("KarneyTest2024")
|
||||
diffs_karney = []
|
||||
# examples_karney = ne_karney.get_examples((30500, 40500))
|
||||
examples_karney = ne_karney.get_random_examples(2)
|
||||
for example in examples_karney:
|
||||
beta0, lamb0, alpha0, beta1, lamb1, alpha1, s = example
|
||||
|
||||
try:
|
||||
alpha0_num, alpha1_num, s_num = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=4000, iter_max=10)
|
||||
diffs_karney.append((wu.rad2deg(abs(alpha0-alpha0_num)), wu.rad2deg(abs(alpha1-alpha1_num)), abs(s-s_num)))
|
||||
except:
|
||||
print(f"Fehler für {beta0}, {lamb0}, {beta1}, {lamb1}")
|
||||
diffs_karney = np.array(diffs_karney)
|
||||
print(diffs_karney)
|
||||
pass
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user