GHA1 ana richtig aufgerufen im Dashboard und im Test
This commit is contained in:
File diff suppressed because it is too large
Load Diff
@@ -3,19 +3,17 @@
|
||||
{
|
||||
"metadata": {},
|
||||
"cell_type": "code",
|
||||
"outputs": [],
|
||||
"execution_count": null,
|
||||
"source": [
|
||||
"%load_ext autoreload\n",
|
||||
"%autoreload 2"
|
||||
],
|
||||
"id": "a78faf7f4883772f"
|
||||
"id": "a78faf7f4883772f",
|
||||
"outputs": [],
|
||||
"execution_count": null
|
||||
},
|
||||
{
|
||||
"metadata": {},
|
||||
"cell_type": "code",
|
||||
"outputs": [],
|
||||
"execution_count": null,
|
||||
"source": [
|
||||
"%reload_ext autoreload\n",
|
||||
"%autoreload 2\n",
|
||||
@@ -24,19 +22,19 @@
|
||||
"from GHA_triaxial.utils import alpha_para2ell, alpha_ell2para\n",
|
||||
"import numpy as np"
|
||||
],
|
||||
"id": "46aa84a937fea491"
|
||||
"id": "46aa84a937fea491",
|
||||
"outputs": [],
|
||||
"execution_count": null
|
||||
},
|
||||
{
|
||||
"metadata": {},
|
||||
"cell_type": "code",
|
||||
"outputs": [],
|
||||
"execution_count": null,
|
||||
"source": [
|
||||
"ell = EllipsoidTriaxial.init_name(\"KarneyTest2024\")\n",
|
||||
"diffs = []\n",
|
||||
"for beta_deg in range(-180, 181, 45):\n",
|
||||
" for lamb_deg in range(-90, 91, 45):\n",
|
||||
" for alpha_deg in range(0, 360, 45):\n",
|
||||
"for beta_deg in range(-90, 91, 15):\n",
|
||||
" for lamb_deg in range(-180, 180, 15):\n",
|
||||
" for alpha_deg in range(0, 360, 15):\n",
|
||||
" beta = wu.deg2rad(beta_deg)\n",
|
||||
" lamb = wu.deg2rad(lamb_deg)\n",
|
||||
" u, v = ell.ell2para(beta, lamb)\n",
|
||||
@@ -53,13 +51,13 @@
|
||||
" diffs.append((beta_deg, lamb_deg, alpha_deg, diff_1, diff_2))\n",
|
||||
"diffs = np.array(diffs)"
|
||||
],
|
||||
"id": "82fc6cbbe7d5abcb"
|
||||
"id": "82fc6cbbe7d5abcb",
|
||||
"outputs": [],
|
||||
"execution_count": null
|
||||
},
|
||||
{
|
||||
"metadata": {},
|
||||
"cell_type": "code",
|
||||
"outputs": [],
|
||||
"execution_count": null,
|
||||
"source": [
|
||||
"i_max_ell = np.argmax(diffs[:, 3])\n",
|
||||
"max_ell = diffs[i_max_ell, 3]\n",
|
||||
@@ -73,41 +71,9 @@
|
||||
"print(f'Für parametrisches Alpha = {point_max_para[2]}° und beta = {point_max_para[0]}°, lamb = {point_max_para[1]}°: diff = {max_ell}\"')\n",
|
||||
"pass"
|
||||
],
|
||||
"id": "97b5b8c9ca5377ab"
|
||||
},
|
||||
{
|
||||
"metadata": {
|
||||
"ExecuteTime": {
|
||||
"end_time": "2026-01-20T15:33:40.785362Z",
|
||||
"start_time": "2026-01-20T15:33:34.296487Z"
|
||||
}
|
||||
},
|
||||
"cell_type": "code",
|
||||
"source": [
|
||||
"ell = EllipsoidTriaxial.init_name(\"KarneyTest2024\")\n",
|
||||
"diffs = []\n",
|
||||
"for beta_deg in range(-180, 181, 45):\n",
|
||||
" for lamb_deg in range(-90, 91, 45):\n",
|
||||
" for alpha_deg in range(0, 360, 45):\n",
|
||||
" beta = wu.deg2rad(beta_deg)\n",
|
||||
" lamb = wu.deg2rad(lamb_deg)\n",
|
||||
" u, v = ell.ell2para(beta, lamb)\n",
|
||||
" alpha = wu.deg2rad(alpha_deg)\n",
|
||||
"\n",
|
||||
" alpha_para_1, *_ = alpha_ell2para(ell, beta, lamb, alpha)\n",
|
||||
" alpha_ell_1, *_ = alpha_para2ell(ell, u, v, alpha_para_1)\n",
|
||||
" diff_1 = wu.deg2rad(abs(alpha_ell_1 - alpha))/3600\n",
|
||||
"\n",
|
||||
" alpha_ell_2, *_ = alpha_para2ell(ell, u, v, alpha)\n",
|
||||
" alpha_para_2, *_ = alpha_ell2para(ell, beta, lamb, alpha_ell_2)\n",
|
||||
" diff_2 = wu.deg2rad(abs(alpha_para_2 - alpha))/3600\n",
|
||||
"\n",
|
||||
" diffs.append((beta_deg, lamb_deg, alpha_deg, diff_1, diff_2))\n",
|
||||
"diffs = np.array(diffs)"
|
||||
],
|
||||
"id": "98b9b220118deb3f",
|
||||
"id": "97b5b8c9ca5377ab",
|
||||
"outputs": [],
|
||||
"execution_count": 6
|
||||
"execution_count": null
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
|
||||
@@ -12,6 +12,7 @@ from threading import Timer
|
||||
from ellipsoide import EllipsoidTriaxial
|
||||
import winkelumrechnungen as wu
|
||||
import ausgaben as aus
|
||||
from GHA_triaxial.utils import alpha_ell2para, alpha_para2ell
|
||||
|
||||
from GHA_triaxial.gha1_ana import gha1_ana
|
||||
from GHA_triaxial.gha1_num import gha1_num
|
||||
@@ -637,10 +638,13 @@ def compute_gha1_ana(n1, cb_ana, n_in, beta0, lamb0, s, a0, ax, ay, b):
|
||||
beta_rad = wu.deg2rad(float(beta0))
|
||||
lamb_rad = wu.deg2rad(float(lamb0))
|
||||
alpha_rad = wu.deg2rad(float(a0))
|
||||
_, _, alpha_rad_para = alpha_ell2para(ell, beta_rad, lamb_rad, alpha_rad)
|
||||
s_val = float(s)
|
||||
|
||||
P0 = ell.ell2cart(beta_rad, lamb_rad)
|
||||
P1_ana, alpha2 = gha1_ana(ell, P0, alpha_rad, s_val, n_in)
|
||||
P1_ana, alpha2_para = gha1_ana(ell, P0, alpha_rad_para, s_val, n_in)
|
||||
u1, v1 = ell.cart2para(P1_ana)
|
||||
alpha2 = alpha_para2ell(ell, u1, v1, alpha2_para)
|
||||
beta2_ana, lamb2_ana = ell.cart2ell(P1_ana)
|
||||
|
||||
out = html.Div([
|
||||
|
||||
Reference in New Issue
Block a user