From 39641b52939657c2818b58ddef8a61ecf11df750 Mon Sep 17 00:00:00 2001 From: Nico Date: Thu, 5 Feb 2026 15:52:22 +0100 Subject: [PATCH] ell --- GHA_triaxial/gha2_num.py | 24 ++++++++++++------------ 1 file changed, 12 insertions(+), 12 deletions(-) diff --git a/GHA_triaxial/gha2_num.py b/GHA_triaxial/gha2_num.py index 734dc22..8a9f313 100644 --- a/GHA_triaxial/gha2_num.py +++ b/GHA_triaxial/gha2_num.py @@ -17,7 +17,7 @@ def sph_azimuth(beta1, lam1, beta2, lam2): a += 2 * np.pi return a -def BETA_LAMBDA(beta, lamb): +def BETA_LAMBDA(ell, beta, lamb): BETA = (ell.ay**2 * np.sin(beta)**2 + ell.b**2 * np.cos(beta)**2) / (ell.Ex**2 - ell.Ey**2 * np.sin(beta)**2) LAMBDA = (ell.ax**2 * np.sin(lamb)**2 + ell.ay**2 * np.cos(lamb)**2) / (ell.Ex**2 - ell.Ee**2 * np.cos(lamb)**2) @@ -63,7 +63,7 @@ def p_coef(beta, lamb): BETA_, LAMBDA_, BETA__, LAMBDA__, E_beta, E_lamb, G_beta, G_lamb, E_beta_beta, E_beta_lamb, E_lamb_lamb, - G_beta_beta, G_beta_lamb, G_lamb_lamb) = BETA_LAMBDA(beta, lamb) + G_beta_beta, G_beta_lamb, G_lamb_lamb) = BETA_LAMBDA(ell, beta, lamb) p_3 = - 0.5 * (E_lamb / G) p_2 = (G_beta / G) - 0.5 * (E_beta / E) @@ -102,7 +102,7 @@ def q_coef(beta, lamb): BETA_, LAMBDA_, BETA__, LAMBDA__, E_beta, E_lamb, G_beta, G_lamb, E_beta_beta, E_beta_lamb, E_lamb_lamb, - G_beta_beta, G_beta_lamb, G_lamb_lamb) = BETA_LAMBDA(beta, lamb) + G_beta_beta, G_beta_lamb, G_lamb_lamb) = BETA_LAMBDA(ell, beta, lamb) q_3 = - 0.5 * (G_beta / E) q_2 = (E_lamb / E) - 0.5 * (G_lamb / G) @@ -164,7 +164,7 @@ def gha2_num(ell: EllipsoidTriaxial, beta_1: float, lamb_1: float, beta_2: float if abs(dlamb) < 1e-15: beta_0 = 0.0 else: - (_, _, E1, G1, *_) = BETA_LAMBDA(beta_1, lamb_1) + (_, _, E1, G1, *_) = BETA_LAMBDA(ell, beta_1, lamb_1) beta_0 = np.sqrt(G1 / E1) * cot(alpha0_sph) ode_lamb = buildODElamb() @@ -196,7 +196,7 @@ def gha2_num(ell: EllipsoidTriaxial, beta_1: float, lamb_1: float, beta_2: float return False, None, None, None alpha0_sph = sph_azimuth(beta_1, lamb_1, beta_2, lamb_2) - (_, _, E1, G1, *_) = BETA_LAMBDA(beta_1, lamb_1) + (_, _, E1, G1, *_) = BETA_LAMBDA(ell, beta_1, lamb_1) beta_p0_sph = np.sqrt(G1 / E1) * cot(alpha0_sph) guesses = [ @@ -220,7 +220,7 @@ def gha2_num(ell: EllipsoidTriaxial, beta_1: float, lamb_1: float, beta_2: float integrand = np.zeros(N + 1) for i in range(N + 1): - (_, _, Ei, Gi, *_) = BETA_LAMBDA(beta_arr_c[i], lamb_arr_c[i]) + (_, _, Ei, Gi, *_) = BETA_LAMBDA(ell, beta_arr_c[i], lamb_arr_c[i]) integrand[i] = np.sqrt(Ei * beta_p_arr_c[i] ** 2 + Gi) h = abs(dlamb) / N @@ -253,9 +253,9 @@ def gha2_num(ell: EllipsoidTriaxial, beta_1: float, lamb_1: float, beta_2: float beta_p_arr[i] = state[1] (_, _, E1, G1, - *_) = BETA_LAMBDA(beta_arr[0], lamb_arr[0]) + *_) = BETA_LAMBDA(ell, beta_arr[0], lamb_arr[0]) (_, _, E2, G2, - *_) = BETA_LAMBDA(beta_arr[-1], lamb_arr[-1]) + *_) = BETA_LAMBDA(ell, beta_arr[-1], lamb_arr[-1]) alpha_1 = arccot(np.sqrt(E1 / G1) * beta_p_arr[0]) alpha_2 = arccot(np.sqrt(E2 / G2) * beta_p_arr[-1]) @@ -263,7 +263,7 @@ def gha2_num(ell: EllipsoidTriaxial, beta_1: float, lamb_1: float, beta_2: float integrand = np.zeros(N + 1) for i in range(N + 1): (_, _, Ei, Gi, - *_) = BETA_LAMBDA(beta_arr[i], lamb_arr[i]) + *_) = BETA_LAMBDA(ell, beta_arr[i], lamb_arr[i]) integrand[i] = np.sqrt(Ei * beta_p_arr[i] ** 2 + Gi) h = abs(dlamb) / N @@ -341,9 +341,9 @@ def gha2_num(ell: EllipsoidTriaxial, beta_1: float, lamb_1: float, beta_2: float # Azimute (BETA1, LAMBDA1, E1, G1, - *_) = BETA_LAMBDA(beta_arr[0], lamb_arr[0]) + *_) = BETA_LAMBDA(ell, beta_arr[0], lamb_arr[0]) (BETA2, LAMBDA2, E2, G2, - *_) = BETA_LAMBDA(beta_arr[-1], lamb_arr[-1]) + *_) = BETA_LAMBDA(ell, beta_arr[-1], lamb_arr[-1]) alpha_1 = (np.pi / 2.0) - arccot(np.sqrt(LAMBDA1 / BETA1) * lambda_p_arr[0]) alpha_2 = (np.pi / 2.0) - arccot(np.sqrt(LAMBDA2 / BETA2) * lambda_p_arr[-1]) @@ -351,7 +351,7 @@ def gha2_num(ell: EllipsoidTriaxial, beta_1: float, lamb_1: float, beta_2: float integrand = np.zeros(N + 1) for i in range(N + 1): (_, _, Ei, Gi, - *_) = BETA_LAMBDA(beta_arr[i], lamb_arr[i]) + *_) = BETA_LAMBDA(ell, beta_arr[i], lamb_arr[i]) integrand[i] = np.sqrt(Ei + Gi * lambda_p_arr[i] ** 2) h = abs(dbeta) / N