Merge remote-tracking branch 'origin/main'

# Conflicts:
#	GHA_triaxial/gha2_num.py
This commit is contained in:
Tammo.Weber
2026-02-05 21:44:28 +01:00
4 changed files with 553 additions and 2113 deletions

250
GHA_triaxial/gha1_ES.py Normal file
View File

@@ -0,0 +1,250 @@
from __future__ import annotations
from typing import List, Optional, Tuple
import numpy as np
from ellipsoide import EllipsoidTriaxial
from GHA_triaxial.gha1_ana import gha1_ana
from GHA_triaxial.gha1_approx import gha1_approx
from Hansen_ES_CMA import escma
from utils_angle import wrap_to_pi
from numpy.typing import NDArray
def ellipsoid_formparameter(ell: EllipsoidTriaxial):
"""
Berechnet die Formparameter des dreiachsigen Ellipsoiden nach Karney (2025), Gl. (2)
:param ell: Ellipsoid
:return: e, k und k'
"""
nenner = np.sqrt(max(ell.ax * ell.ax - ell.b * ell.b, 0.0))
k = np.sqrt(max(ell.ay * ell.ay - ell.b * ell.b, 0.0)) / nenner
k_ = np.sqrt(max(ell.ax * ell.ax - ell.ay * ell.ay, 0.0)) / nenner
e = np.sqrt(max(ell.ax * ell.ax - ell.b * ell.b, 0.0)) / ell.ay
return e, k, k_
def ENU_beta_omega(beta: float, omega: float, ell: EllipsoidTriaxial) \
-> Tuple[NDArray, NDArray, NDArray, float, float, NDArray]:
"""
Analytische ENU-Basis in ellipsoidische Koordinaten (β, ω) nach Karney (2025), S. 2
:param beta: Beta Koordinate
:param omega: Omega Koordinate
:param ell: Ellipsoid
:return: E_hat = Einheitsrichtung entlang wachsendem ω (East)
N_hat = Einheitsrichtung entlang wachsendem β (North)
U_hat = Einheitsnormale (Up)
En & Nn = Längen der unnormierten Ableitungen
R (XYZ) = Punkt in XYZ
"""
# Berechnungshilfen
omega = wrap_to_pi(omega)
cb = np.cos(beta)
sb = np.sin(beta)
co = np.cos(omega)
so = np.sin(omega)
# D = sqrt(a^2 - c^2)
D = np.sqrt(ell.ax*ell.ax - ell.b*ell.b)
# Sx = sqrt(a^2 - b^2 sin^2β - c^2 cos^2β)
Sx = np.sqrt(ell.ax*ell.ax - ell.ay*ell.ay*(sb*sb) - ell.b*ell.b*(cb*cb))
# Sz = sqrt(a^2 sin^2ω + b^2 cos^2ω - c^2)
Sz = np.sqrt(ell.ax*ell.ax*(so*so) + ell.ay*ell.ay*(co*co) - ell.b*ell.b)
# Karney Gl. (4)
X = ell.ax * co * Sx / D
Y = ell.ay * cb * so
Z = ell.b * sb * Sz / D
R = np.array([X, Y, Z], dtype=float)
# --- Ableitungen - Karney Gl. (5a,b,c)---
# E = ∂R/∂ω
dX_dw = -ell.ax * so * Sx / D
dY_dw = ell.ay * cb * co
dZ_dw = ell.b * sb * (so * co * (ell.ax*ell.ax - ell.ay*ell.ay) / Sz) / D
E = np.array([dX_dw, dY_dw, dZ_dw], dtype=float)
# N = ∂R/∂β
dX_db = ell.ax * co * (sb * cb * (ell.b*ell.b - ell.ay*ell.ay) / Sx) / D
dY_db = -ell.ay * sb * so
dZ_db = ell.b * cb * Sz / D
N = np.array([dX_db, dY_db, dZ_db], dtype=float)
# U = Grad(x^2/a^2 + y^2/b^2 + z^2/c^2 - 1)
U = np.array([X/(ell.ax*ell.ax), Y/(ell.ay*ell.ay), Z/(ell.b*ell.b)], dtype=float)
En = np.linalg.norm(E)
Nn = np.linalg.norm(N)
Un = np.linalg.norm(U)
N_hat = N / Nn
E_hat = E / En
U_hat = U / Un
return E_hat, N_hat, U_hat, En, Nn, R
def jacobi_konstante(beta: float, omega: float, alpha: float, ell: EllipsoidTriaxial) -> float:
"""
Jacobi-Konstante nach Karney (2025), Gl. (14)
:param beta: Beta Koordinate
:param omega: Omega Koordinate
:param alpha: Azimut alpha
:param ell: Ellipsoid
:return: Jacobi-Konstante
"""
e, k, k_ = ellipsoid_formparameter(ell)
gamma_jacobi = float((k ** 2) * (np.cos(beta) ** 2) * (np.sin(alpha) ** 2) - (k_ ** 2) * (np.sin(omega) ** 2) * (np.cos(alpha) ** 2))
return gamma_jacobi
def azimuth_at_ESpoint(P_prev: NDArray, P_curr: NDArray, E_hat_curr: NDArray, N_hat_curr: NDArray, U_hat_curr: NDArray) -> float:
"""
Berechnet das Azimut in der lokalen Tangentialebene am aktuellen Punkt P_curr, gemessen
an der Bewegungsrichtung vom vorherigen Punkt P_prev nach P_curr.
:param P_prev: vorheriger Punkt
:param P_curr: aktueller Punkt
:param E_hat_curr: Einheitsvektor der lokalen Tangentialrichtung am Punkt P_curr
:param N_hat_curr: Einheitsvektor der lokalen Tangentialrichtung am Punkt P_curr
:param U_hat_curr: Einheitsnormalenvektor am Punkt P_curr
:return: Azimut in Radiant
"""
v = (P_curr - P_prev).astype(float)
vT = v - float(np.dot(v, U_hat_curr)) * U_hat_curr
vT_hat = vT / np.linalg.norm(vT)
sE = float(np.dot(vT_hat, E_hat_curr))
sN = float(np.dot(vT_hat, N_hat_curr))
return wrap_to_pi(float(np.arctan2(sE, sN)))
def optimize_next_point(beta_i: float, omega_i: float, alpha_i: float, ds: float, gamma0: float,
ell: EllipsoidTriaxial, maxSegLen: float = 1000.0, sigma0: float = None) -> Tuple[float, float, NDArray, float]:
"""
Berechnung der 1. GHA mithilfe der CMA-ES.
Die CMA-ES optimiert sukzessive einen Punkt, der maxSegLen vom vorherigen Punkt entfernt und zusätzlich auf der
geodätischen Linien liegt. Somit entsteht ein Geodäten ähnlicher Polygonzug auf der Oberfläche des dreiachsigen Ellipsoids.
:param beta_i: Beta Koordinate am Punkt i
:param omega_i: Omega Koordinate am Punkt i
:param alpha_i: Azimut am Punkt i
:param ds: Gesamtlänge
:param gamma0: Jacobi-Konstante am Startpunkt
:param ell: Ellipsoid
:param maxSegLen: maximale Segmentlänge
:param sigma0:
:return:
"""
# Startbasis
E_i, N_i, U_i, En_i, Nn_i, P_i = ENU_beta_omega(beta_i, omega_i, ell)
# Prediktor: dβ ≈ ds cosα / |N|, dω ≈ ds sinα / |E|
d_beta = ds * float(np.cos(alpha_i)) / Nn_i
d_omega = ds * float(np.sin(alpha_i)) / En_i
beta_pred = beta_i + d_beta
omega_pred = wrap_to_pi(omega_i + d_omega)
xmean = np.array([beta_pred, omega_pred], dtype=float)
if sigma0 is None:
R0 = (ell.ax + ell.ay + ell.b) / 3
sigma0 = 1e-5 * (ds / R0)
def fitness(x: NDArray) -> float:
"""
Fitnessfunktion: Fitnesscheck erfolgt anhand der Segmentlänge und der Jacobi-Konstante.
Die Segmentlänge muss möglichst gut zum Sollwert passen. Die Jacobi-Konstante am Punkt x muss zur
Jacobi-Konstanten am Startpunkt passen, damit der Polygonzug auf derselben geodätischen Linie bleibt.
:param x: Koordinate in beta, lambda aus der CMA-ES
:return: Fitnesswert (f)
"""
beta = x[0]
omega = wrap_to_pi(x[1])
P = ell.ell2cart(beta, omega) # in kartesischer Koordinaten
d = float(np.linalg.norm(P - P_i)) # Distanz zwischen
# maxSegLen einhalten
J_len = ((d - ds) / ds) ** 2
w_len = 1.0
# Azimut für Jacobi-Konstante
E_j, N_j, U_j, _, _, _ = ENU_beta_omega(beta, omega, ell)
alpha_end = azimuth_at_ESpoint(P_i, P, E_j, N_j, U_j)
# Jacobi-Konstante
g_end = jacobi_konstante(beta, omega, alpha_end, ell)
J_gamma = (g_end - gamma0) ** 2
w_gamma = 10
f = float(w_len * J_len + w_gamma * J_gamma)
return f
xb = escma(fitness, N=2, xmean=xmean, sigma=sigma0) # Aufruf CMA-ES
beta_best = xb[0]
omega_best = wrap_to_pi(xb[1])
P_best = ell.ell2cart(beta_best, omega_best)
E_j, N_j, U_j, _, _, _ = ENU_beta_omega(beta_best, omega_best, ell)
alpha_end = azimuth_at_ESpoint(P_i, P_best, E_j, N_j, U_j)
return beta_best, omega_best, P_best, alpha_end
def gha1_ES(ell: EllipsoidTriaxial, beta0: float, omega0: float, alpha0: float, s_total: float, maxSegLen: float = 1000):
"""
Aufruf der 1. GHA mittels CMA-ES
:param ell: Ellipsoid
:param beta0: Beta Startkoordinate
:param omega0: Omega Startkoordinate
:param alpha0: Azimut Startkoordinate
:param s_total: Gesamtstrecke
:param maxSegLen: maximale Segmentlänge
:return: Zielpunkt Pk und Azimut am Zielpunkt
"""
beta = float(beta0)
omega = wrap_to_pi(float(omega0))
alpha = wrap_to_pi(float(alpha0))
gamma0 = jacobi_konstante(beta, omega, alpha, ell) # Referenz-γ0
points: List[NDArray] = [ell.ell2cart(beta, omega)]
alpha_end: List[float] = [alpha]
s_acc = 0.0
step = 0
nsteps_est = int(np.ceil(s_total / maxSegLen))
while s_acc < s_total - 1e-9:
step += 1
ds = min(maxSegLen, s_total - s_acc)
print(f"[GHA1-ES] Step {step}/{nsteps_est} ds={ds:.3f} m s_acc={s_acc:.3f} m beta={beta:.6f} omega={omega:.6f} alpha={alpha:.6f}")
beta, omega, P, alpha = optimize_next_point(beta_i=beta, omega_i=omega, alpha_i=alpha, ds=ds, gamma0=gamma0,
ell=ell, maxSegLen=maxSegLen)
s_acc += ds
points.append(P)
alpha_end.append(alpha)
if step > nsteps_est + 50:
raise RuntimeError("Zu viele Schritte vermutlich Konvergenzproblem / falsche Azimut-Konvention.")
Pk = points[-1]
alpha1 = alpha_end[-1]
return Pk, alpha1
if __name__ == "__main__":
ell = EllipsoidTriaxial.init_name("BursaSima1980round")
s = 188891.650873
alpha0 = 70/(180/np.pi)
P0 = ell.ell2cart(5/(180/np.pi), -90/(180/np.pi))
point1, alpha1 = gha1_ana(ell, P0, alpha0=alpha0, s=s, maxM=100, maxPartCircum=32)
point1app, alpha1app = gha1_approx(ell, P0, alpha0=alpha0, s=s, ds=1000)
res, alpha = gha1_ES(ell, beta0=5/(180/np.pi), omega0=-90/(180/np.pi), alpha0=alpha0, s_total=s, maxSegLen=1000)
print(point1)
print(res)
print(alpha)
# print("alpha1 (am Endpunkt):", res.alpha1)
print(res - point1)
print(point1app - point1, "approx")

View File

@@ -49,7 +49,7 @@ def midpoint_fitness(x: tuple) -> float:
return f
def gha2_ES(ell: EllipsoidTriaxial, P0: NDArray, Pk: NDArray, maxSegLen: float = None, stopeval: int = 2000, maxIter: int = 10000, all_points: bool = False):
def gha2_ES(ell: EllipsoidTriaxial, P0: NDArray, Pk: NDArray, maxSegLen: float = None, maxIter: int = 10000, all_points: bool = False):
"""
Berechnen der 2. GHA mithilfe der CMA-ES.
Die CMA-ES optimiert sukzessive den Mittelpunkt zwischen Start- und Zielpunkt. Der Abbruch der Berechnung erfolgt, wenn alle Segmentlängen <= maxSegLen sind.
@@ -58,7 +58,6 @@ def gha2_ES(ell: EllipsoidTriaxial, P0: NDArray, Pk: NDArray, maxSegLen: float =
:param P0: Startpunkt
:param Pk: Zielpunkt
:param maxSegLen: maximale Segmentlänge
:param stopeval: maximale Durchläufe der CMA-ES
:param maxIter: maximale Durchläufe der Mittelpunktsgenerierung
:param all_points: Ergebnisliste mit allen Punkte, die wahlweise mit ausgegeben werden kann
:return: Richtungswinkel des Start- und Zielpunktes und Gesamtlänge
@@ -67,7 +66,7 @@ def gha2_ES(ell: EllipsoidTriaxial, P0: NDArray, Pk: NDArray, maxSegLen: float =
ell_ES = ell
R0 = (ell.ax + ell.ay + ell.b) / 3
if maxSegLen is None:
maxSegLen = R0 * 1 / (637.4) # 10km Segment bei mittleren Erdradius
maxSegLen = R0 * 1 / (637.4*2) # 10km Segment bei mittleren Erdradius
sigma_uv_nom = 1e-3 * (maxSegLen / R0) # ~1e-5
@@ -101,8 +100,7 @@ def gha2_ES(ell: EllipsoidTriaxial, P0: NDArray, Pk: NDArray, maxSegLen: float =
sigmaStep = sigma_uv_nom * (Sehne(A, B) / maxSegLen)
u, v = escma(midpoint_fitness, N=2, xmean=xmean, sigma=sigmaStep, stopfitness=-np.inf,
stopeval=stopeval)
u, v = escma(midpoint_fitness, N=2, xmean=xmean, sigma=sigmaStep)
P_next = ell.para2cart(u, v)
new_points.append(P_next)
@@ -171,7 +169,7 @@ if __name__ == '__main__':
beta1, lamb1 = (0.7, 0.3)
P1 = ell.ell2cart(beta1, lamb1)
alpha0, alpha1, s_num, betas, lambs = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=10000, all_points=True)
alpha0, alpha1, s_num, betas, lambs = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=1000, all_points=True)
points_num = []
for beta, lamb in zip(betas, lambs):
points_num.append(ell.ell2cart(beta, lamb))