Merge remote-tracking branch 'origin/main'
This commit is contained in:
@@ -30,6 +30,22 @@ def gha2_num(ell: EllipsoidTriaxial, beta_1: float, lamb_1: float, beta_2: float
|
||||
def arccot(x):
|
||||
return np.arctan2(1.0, x)
|
||||
|
||||
def cot(a):
|
||||
return np.cos(a) / np.sin(a)
|
||||
|
||||
def wrap_to_pi(x):
|
||||
return (x + np.pi) % (2 * np.pi) - np.pi
|
||||
|
||||
def sph_azimuth(beta1, lam1, beta2, lam2):
|
||||
# sphärischer Anfangsazimut (von Norden/meridian, im Bogenmaß)
|
||||
dlam = wrap_to_pi(lam2 - lam1)
|
||||
y = np.sin(dlam) * np.cos(beta2)
|
||||
x = np.cos(beta1) * np.sin(beta2) - np.sin(beta1) * np.cos(beta2) * np.cos(dlam)
|
||||
a = np.arctan2(y, x) # (-pi, pi]
|
||||
if a < 0:
|
||||
a += 2 * np.pi
|
||||
return a
|
||||
|
||||
def BETA_LAMBDA(beta, lamb):
|
||||
|
||||
BETA = (ell.ay**2 * np.sin(beta)**2 + ell.b**2 * np.cos(beta)**2) / (ell.Ex**2 - ell.Ey**2 * np.sin(beta)**2)
|
||||
@@ -158,11 +174,13 @@ def gha2_num(ell: EllipsoidTriaxial, beta_1: float, lamb_1: float, beta_2: float
|
||||
N = n
|
||||
|
||||
dlamb = lamb_2 - lamb_1
|
||||
alpha0_sph = sph_azimuth(beta_1, lamb_1, beta_2, lamb_2)
|
||||
|
||||
if abs(dlamb) < 1e-15:
|
||||
beta_0 = 0.0
|
||||
else:
|
||||
beta_0 = (beta_2 - beta_1) / (lamb_2 - lamb_1)
|
||||
(_, _, E1, G1, *_) = BETA_LAMBDA(beta_1, lamb_1)
|
||||
beta_0 = np.sqrt(G1 / E1) * cot(alpha0_sph)
|
||||
|
||||
converged = False
|
||||
iterations = 0
|
||||
@@ -170,40 +188,76 @@ def gha2_num(ell: EllipsoidTriaxial, beta_1: float, lamb_1: float, beta_2: float
|
||||
# funcs = functions()
|
||||
ode_lamb = buildODElamb()
|
||||
|
||||
for i in range(iter_max):
|
||||
iterations = i + 1
|
||||
def solve_newton(beta_p0_init: float):
|
||||
beta_p0 = float(beta_p0_init)
|
||||
|
||||
# startwerte = [lamb_1, beta_1, beta_0, 0.0, 1.0]
|
||||
startwerte = np.array([beta_1, beta_0, 0.0, 1.0])
|
||||
for _ in range(iter_max):
|
||||
startwerte = np.array([beta_1, beta_p0, 0.0, 1.0], dtype=float)
|
||||
lamb_list, states = rk.rk4(ode_lamb, lamb_1, startwerte, dlamb, N, False)
|
||||
|
||||
# werte = rk.verfahren(funcs, startwerte, dlamb, N)
|
||||
lamb_list, werte = rk.rk4(ode_lamb, lamb_1, startwerte, dlamb, N, False)
|
||||
# lamb_end, beta_end, beta_p_end, X3_end, X4_end = werte[-1]
|
||||
lamb_end = lamb_list[-1]
|
||||
beta_end, beta_p_end, X3_end, X4_end = werte[-1]
|
||||
|
||||
d_beta_end_d_beta0 = X3_end
|
||||
beta_end, beta_p_end, X3_end, X4_end = states[-1]
|
||||
delta = beta_end - beta_2
|
||||
|
||||
if abs(delta) < epsilon:
|
||||
converged = True
|
||||
break
|
||||
return True, beta_p0, lamb_list, states
|
||||
|
||||
d_beta_end_d_beta0 = X3_end
|
||||
if abs(d_beta_end_d_beta0) < 1e-20:
|
||||
raise RuntimeError("Abbruch.")
|
||||
return False, None, None, None
|
||||
|
||||
max_step = 0.5
|
||||
step = delta / d_beta_end_d_beta0
|
||||
max_step = 0.5
|
||||
if abs(step) > max_step:
|
||||
step = np.sign(step) * max_step
|
||||
beta_0 = beta_0 - step
|
||||
|
||||
if not converged:
|
||||
raise RuntimeError("konvergiert nicht.")
|
||||
beta_p0 = beta_p0 - step
|
||||
|
||||
# Z
|
||||
# werte = rk.verfahren(funcs, [lamb_1, beta_1, beta_0, 0.0, 1.0], dlamb, N, False)
|
||||
lamb_list, werte = rk.rk4(ode_lamb, lamb_1, np.array([beta_1, beta_0, 0.0, 1.0]), dlamb, N, False)
|
||||
return False, None, None, None
|
||||
|
||||
alpha0_sph = sph_azimuth(beta_1, lamb_1, beta_2, lamb_2)
|
||||
(_, _, E1, G1, *_) = BETA_LAMBDA(beta_1, lamb_1)
|
||||
beta_p0_sph = np.sqrt(G1 / E1) * cot(alpha0_sph)
|
||||
|
||||
guesses = [
|
||||
beta_p0_sph,
|
||||
0.5 * beta_p0_sph,
|
||||
2.0 * beta_p0_sph,
|
||||
-beta_p0_sph,
|
||||
-0.5 * beta_p0_sph,
|
||||
]
|
||||
|
||||
best = None
|
||||
|
||||
for g in guesses:
|
||||
ok, beta_p0_sol, lamb_list_cand, states_cand = solve_newton(g)
|
||||
if not ok:
|
||||
continue
|
||||
|
||||
beta_arr_c = np.array([st[0] for st in states_cand], dtype=float)
|
||||
beta_p_arr_c = np.array([st[1] for st in states_cand], dtype=float)
|
||||
lamb_arr_c = np.array(lamb_list_cand, dtype=float)
|
||||
|
||||
integrand = np.zeros(N + 1)
|
||||
for i in range(N + 1):
|
||||
(_, _, Ei, Gi, *_) = BETA_LAMBDA(beta_arr_c[i], lamb_arr_c[i])
|
||||
integrand[i] = np.sqrt(Ei * beta_p_arr_c[i] ** 2 + Gi)
|
||||
|
||||
h = abs(dlamb) / N
|
||||
if N % 2 == 0:
|
||||
S = integrand[0] + integrand[-1] \
|
||||
+ 4.0 * np.sum(integrand[1:-1:2]) \
|
||||
+ 2.0 * np.sum(integrand[2:-1:2])
|
||||
s_cand = h / 3.0 * S
|
||||
else:
|
||||
s_cand = np.trapz(integrand, dx=h)
|
||||
|
||||
if (best is None) or (s_cand < best[0]):
|
||||
best = (s_cand, beta_p0_sol, lamb_list_cand, states_cand)
|
||||
|
||||
if best is None:
|
||||
raise RuntimeError("Keine Multi-Start-Variante konvergiert.")
|
||||
|
||||
s_best, beta_0, lamb_list, werte = best
|
||||
|
||||
beta_arr = np.zeros(N + 1)
|
||||
# lamb_arr = np.zeros(N + 1)
|
||||
|
||||
34
dashboard.py
34
dashboard.py
@@ -13,7 +13,7 @@ from GHA_triaxial.approx_gha1 import gha1_approx
|
||||
|
||||
from GHA_triaxial.panou_2013_2GHA_num import gha2_num
|
||||
from GHA_triaxial.ES_gha2 import gha2_ES
|
||||
from GHA_triaxial.approx_gha2 import gha2
|
||||
from GHA_triaxial.approx_gha2 import gha2_approx
|
||||
|
||||
|
||||
app = Dash(__name__, suppress_callback_exceptions=True)
|
||||
@@ -194,7 +194,9 @@ app.layout = html.Div(
|
||||
{"label": "Bursa1972", "value": "Bursa1972"},
|
||||
{"label": "Bursa1970", "value": "Bursa1970"},
|
||||
{"label": "BesselBiaxial", "value": "BesselBiaxial"},
|
||||
{"label": "KarneyTest2024", "value": "KarneyTest2024"},
|
||||
{"label": "Fiction", "value": "Fiction"},
|
||||
|
||||
],
|
||||
value="",
|
||||
style={"width": "300px", "marginBottom": "16px"},
|
||||
@@ -241,12 +243,25 @@ app.layout = html.Div(
|
||||
"minWidth": "520px",
|
||||
"position": "sticky",
|
||||
"top": "0",
|
||||
"marginTop": "-150px",
|
||||
"marginTop": "-50px",
|
||||
},
|
||||
children=[
|
||||
html.Label("Koordinatenart wählen:"),
|
||||
dcc.Dropdown(
|
||||
id="dropdown-coors-type",
|
||||
options=[
|
||||
{"label": "Ellipsoidisch", "value": "ell"},
|
||||
{"label": "Parametrisch", "value": "para"},
|
||||
{"label": "Geodätisch", "value": "geod"},
|
||||
|
||||
],
|
||||
value="ell",
|
||||
clearable=False,
|
||||
style={"width": "300px"},
|
||||
),
|
||||
dcc.Graph(
|
||||
id="ellipsoid-plot",
|
||||
style={"height": "90vh", "width": "100%"},
|
||||
style={"height": "85vh", "width": "100%"},
|
||||
config={"responsive": True}
|
||||
)
|
||||
],
|
||||
@@ -297,7 +312,7 @@ def render_content(tab):
|
||||
options=[
|
||||
{"label": "Analytisch", "value": "analytisch"},
|
||||
{"label": "Numerisch", "value": "numerisch"},
|
||||
{"label": "Stochastisch (ES)", "value": "stochastisch"},
|
||||
#{"label": "Stochastisch (ES)", "value": "stochastisch"},
|
||||
{"label": "Approximiert", "value": "approx"},
|
||||
],
|
||||
value=[],
|
||||
@@ -602,7 +617,7 @@ def compute_gha2_num(n2, beta0, lamb0, beta1, lamb1, ax, ay, b, method2):
|
||||
P0 = ell.ell2cart(beta0_rad, lamb0_rad)
|
||||
P1 = ell.ell2cart(beta1_rad, lamb1_rad)
|
||||
|
||||
a0_num, a1_num, s_num, beta_arr, lamb_arr = gha2_num(ell, beta0_rad, lamb0_rad, beta1_rad, lamb1_rad, all_points=True)
|
||||
a0_num, a1_num, s_num, beta_arr, lamb_arr = gha2_num(ell, beta0_rad, lamb0_rad, beta1_rad, lamb1_rad, all_points=True, n=3000)
|
||||
|
||||
polyline = []
|
||||
for b_rad, l_rad in zip(beta_arr, lamb_arr):
|
||||
@@ -652,7 +667,7 @@ def compute_gha2_stoch(n2, beta0, lamb0, beta1, lamb1, ax, ay, b, method2):
|
||||
P0 = ell.ell2cart(beta0_rad, lamb0_rad)
|
||||
P1 = ell.ell2cart(beta1_rad, lamb1_rad)
|
||||
|
||||
a0_stoch, a1_stoch, s_stoch, points = gha2_ES(ell, P0, P1, all_points=True, sigmaStep=1e-5)
|
||||
a0_stoch, a1_stoch, s_stoch, points = gha2_ES(ell, P0, P1, all_points=True)
|
||||
|
||||
out = html.Div([
|
||||
html.Strong("Stochastisch (ES): "),
|
||||
@@ -691,7 +706,7 @@ def compute_gha2_approx(n2, beta0, lamb0, beta1, lamb1, ax, ay, b, method2):
|
||||
P0 = ell.ell2cart(beta0_rad, lamb0_rad)
|
||||
P1 = ell.ell2cart(beta1_rad, lamb1_rad)
|
||||
|
||||
a0_app, a1_app, s_app, points = gha2(ell, P0, P1, ds=1e-4, all_points=True)
|
||||
a0_app, a1_app, s_app, points = gha2_approx(ell, P0, P1, ds=1e-4, all_points=True)
|
||||
|
||||
out = html.Div([
|
||||
html.Strong("Approximiert: "),
|
||||
@@ -706,6 +721,7 @@ def compute_gha2_approx(n2, beta0, lamb0, beta1, lamb1, ax, ay, b, method2):
|
||||
Input("input-ax", "value"),
|
||||
Input("input-ay", "value"),
|
||||
Input("input-b", "value"),
|
||||
Input("dropdown-coors-type", "value"),
|
||||
Input("store-gha1-ana", "data"),
|
||||
Input("store-gha1-num", "data"),
|
||||
Input("store-gha1-stoch", "data"),
|
||||
@@ -714,13 +730,13 @@ def compute_gha2_approx(n2, beta0, lamb0, beta1, lamb1, ax, ay, b, method2):
|
||||
Input("store-gha2-stoch", "data"),
|
||||
Input("store-gha2-approx", "data"),
|
||||
)
|
||||
def render_all(ax, ay, b, store_gha1_ana, store_gha1_num, store_gha1_stoch, store_gha1_approx, store_gha2_num, store_gha2_stoch, store_gha2_approx):
|
||||
def render_all(ax, ay, b, coords_type, store_gha1_ana, store_gha1_num, store_gha1_stoch, store_gha1_approx, store_gha2_num, store_gha2_stoch, store_gha2_approx):
|
||||
if None in (ax, ay, b):
|
||||
return go.Figure()
|
||||
|
||||
ell = EllipsoidTriaxial(ax, ay, b)
|
||||
fig = ellipsoid_figure(ell, title="")
|
||||
fig = figure_constant_lines(fig, ell, "ell")
|
||||
fig = figure_constant_lines(fig, ell, coords_type)
|
||||
|
||||
def add_from_store(fig, store):
|
||||
if not store:
|
||||
|
||||
Reference in New Issue
Block a user