Merge remote-tracking branch 'origin/main'

This commit is contained in:
2026-02-04 11:24:01 +01:00
2 changed files with 106 additions and 36 deletions

View File

@@ -30,6 +30,22 @@ def gha2_num(ell: EllipsoidTriaxial, beta_1: float, lamb_1: float, beta_2: float
def arccot(x):
return np.arctan2(1.0, x)
def cot(a):
return np.cos(a) / np.sin(a)
def wrap_to_pi(x):
return (x + np.pi) % (2 * np.pi) - np.pi
def sph_azimuth(beta1, lam1, beta2, lam2):
# sphärischer Anfangsazimut (von Norden/meridian, im Bogenmaß)
dlam = wrap_to_pi(lam2 - lam1)
y = np.sin(dlam) * np.cos(beta2)
x = np.cos(beta1) * np.sin(beta2) - np.sin(beta1) * np.cos(beta2) * np.cos(dlam)
a = np.arctan2(y, x) # (-pi, pi]
if a < 0:
a += 2 * np.pi
return a
def BETA_LAMBDA(beta, lamb):
BETA = (ell.ay**2 * np.sin(beta)**2 + ell.b**2 * np.cos(beta)**2) / (ell.Ex**2 - ell.Ey**2 * np.sin(beta)**2)
@@ -158,11 +174,13 @@ def gha2_num(ell: EllipsoidTriaxial, beta_1: float, lamb_1: float, beta_2: float
N = n
dlamb = lamb_2 - lamb_1
alpha0_sph = sph_azimuth(beta_1, lamb_1, beta_2, lamb_2)
if abs(dlamb) < 1e-15:
beta_0 = 0.0
else:
beta_0 = (beta_2 - beta_1) / (lamb_2 - lamb_1)
(_, _, E1, G1, *_) = BETA_LAMBDA(beta_1, lamb_1)
beta_0 = np.sqrt(G1 / E1) * cot(alpha0_sph)
converged = False
iterations = 0
@@ -170,40 +188,76 @@ def gha2_num(ell: EllipsoidTriaxial, beta_1: float, lamb_1: float, beta_2: float
# funcs = functions()
ode_lamb = buildODElamb()
for i in range(iter_max):
iterations = i + 1
def solve_newton(beta_p0_init: float):
beta_p0 = float(beta_p0_init)
# startwerte = [lamb_1, beta_1, beta_0, 0.0, 1.0]
startwerte = np.array([beta_1, beta_0, 0.0, 1.0])
for _ in range(iter_max):
startwerte = np.array([beta_1, beta_p0, 0.0, 1.0], dtype=float)
lamb_list, states = rk.rk4(ode_lamb, lamb_1, startwerte, dlamb, N, False)
# werte = rk.verfahren(funcs, startwerte, dlamb, N)
lamb_list, werte = rk.rk4(ode_lamb, lamb_1, startwerte, dlamb, N, False)
# lamb_end, beta_end, beta_p_end, X3_end, X4_end = werte[-1]
lamb_end = lamb_list[-1]
beta_end, beta_p_end, X3_end, X4_end = werte[-1]
beta_end, beta_p_end, X3_end, X4_end = states[-1]
delta = beta_end - beta_2
d_beta_end_d_beta0 = X3_end
delta = beta_end - beta_2
if abs(delta) < epsilon:
return True, beta_p0, lamb_list, states
if abs(delta) < epsilon:
converged = True
break
d_beta_end_d_beta0 = X3_end
if abs(d_beta_end_d_beta0) < 1e-20:
return False, None, None, None
if abs(d_beta_end_d_beta0) < 1e-20:
raise RuntimeError("Abbruch.")
step = delta / d_beta_end_d_beta0
max_step = 0.5
if abs(step) > max_step:
step = np.sign(step) * max_step
max_step = 0.5
step = delta / d_beta_end_d_beta0
if abs(step) > max_step:
step = np.sign(step) * max_step
beta_0 = beta_0 - step
beta_p0 = beta_p0 - step
if not converged:
raise RuntimeError("konvergiert nicht.")
return False, None, None, None
# Z
# werte = rk.verfahren(funcs, [lamb_1, beta_1, beta_0, 0.0, 1.0], dlamb, N, False)
lamb_list, werte = rk.rk4(ode_lamb, lamb_1, np.array([beta_1, beta_0, 0.0, 1.0]), dlamb, N, False)
alpha0_sph = sph_azimuth(beta_1, lamb_1, beta_2, lamb_2)
(_, _, E1, G1, *_) = BETA_LAMBDA(beta_1, lamb_1)
beta_p0_sph = np.sqrt(G1 / E1) * cot(alpha0_sph)
guesses = [
beta_p0_sph,
0.5 * beta_p0_sph,
2.0 * beta_p0_sph,
-beta_p0_sph,
-0.5 * beta_p0_sph,
]
best = None
for g in guesses:
ok, beta_p0_sol, lamb_list_cand, states_cand = solve_newton(g)
if not ok:
continue
beta_arr_c = np.array([st[0] for st in states_cand], dtype=float)
beta_p_arr_c = np.array([st[1] for st in states_cand], dtype=float)
lamb_arr_c = np.array(lamb_list_cand, dtype=float)
integrand = np.zeros(N + 1)
for i in range(N + 1):
(_, _, Ei, Gi, *_) = BETA_LAMBDA(beta_arr_c[i], lamb_arr_c[i])
integrand[i] = np.sqrt(Ei * beta_p_arr_c[i] ** 2 + Gi)
h = abs(dlamb) / N
if N % 2 == 0:
S = integrand[0] + integrand[-1] \
+ 4.0 * np.sum(integrand[1:-1:2]) \
+ 2.0 * np.sum(integrand[2:-1:2])
s_cand = h / 3.0 * S
else:
s_cand = np.trapz(integrand, dx=h)
if (best is None) or (s_cand < best[0]):
best = (s_cand, beta_p0_sol, lamb_list_cand, states_cand)
if best is None:
raise RuntimeError("Keine Multi-Start-Variante konvergiert.")
s_best, beta_0, lamb_list, werte = best
beta_arr = np.zeros(N + 1)
# lamb_arr = np.zeros(N + 1)