ell2
This commit is contained in:
@@ -17,39 +17,72 @@ def sph_azimuth(beta1, lam1, beta2, lam2):
|
|||||||
a += 2 * np.pi
|
a += 2 * np.pi
|
||||||
return a
|
return a
|
||||||
|
|
||||||
def BETA_LAMBDA(ell, beta, lamb):
|
|
||||||
|
|
||||||
BETA = (ell.ay**2 * np.sin(beta)**2 + ell.b**2 * np.cos(beta)**2) / (ell.Ex**2 - ell.Ey**2 * np.sin(beta)**2)
|
# Panou 2013
|
||||||
LAMBDA = (ell.ax**2 * np.sin(lamb)**2 + ell.ay**2 * np.cos(lamb)**2) / (ell.Ex**2 - ell.Ee**2 * np.cos(lamb)**2)
|
def gha2_num(ell: EllipsoidTriaxial, beta_1: float, lamb_1: float, beta_2: float, lamb_2: float,
|
||||||
|
n: int = 16000, epsilon: float = 10**-12, iter_max: int = 30, all_points: bool = False
|
||||||
|
) -> Tuple[float, float, float] | Tuple[float, float, float, NDArray, NDArray]:
|
||||||
|
"""
|
||||||
|
|
||||||
|
:param ell: triaxiales Ellipsoid
|
||||||
|
:param beta_1: reduzierte ellipsoidische Breite Punkt 1
|
||||||
|
:param lamb_1: elllipsoidische Länge Punkt 1
|
||||||
|
:param beta_2: reduzierte ellipsoidische Breite Punkt 2
|
||||||
|
:param lamb_2: elllipsoidische Länge Punkt 2
|
||||||
|
:param n: Anzahl Schritte
|
||||||
|
:param epsilon:
|
||||||
|
:param iter_max: Maximale Anzhal Iterationen
|
||||||
|
:param all_points:
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
|
|
||||||
|
# h_x, h_y, h_e entsprechen E_x, E_y, E_e
|
||||||
|
def BETA_LAMBDA(beta, lamb):
|
||||||
|
|
||||||
|
BETA = (ell.ay ** 2 * np.sin(beta) ** 2 + ell.b ** 2 * np.cos(beta) ** 2) / (
|
||||||
|
ell.Ex ** 2 - ell.Ey ** 2 * np.sin(beta) ** 2)
|
||||||
|
LAMBDA = (ell.ax ** 2 * np.sin(lamb) ** 2 + ell.ay ** 2 * np.cos(lamb) ** 2) / (
|
||||||
|
ell.Ex ** 2 - ell.Ee ** 2 * np.cos(lamb) ** 2)
|
||||||
|
|
||||||
# Erste Ableitungen von ΒETA und LAMBDA
|
# Erste Ableitungen von ΒETA und LAMBDA
|
||||||
BETA_ = (ell.ax ** 2 * ell.Ey ** 2 * np.sin(2 * beta)) / (ell.Ex ** 2 - ell.Ey ** 2 * np.sin(beta) ** 2) ** 2
|
BETA_ = (ell.ax ** 2 * ell.Ey ** 2 * np.sin(2 * beta)) / (ell.Ex ** 2 - ell.Ey ** 2 * np.sin(beta) ** 2) ** 2
|
||||||
LAMBDA_ = - (ell.b ** 2 * ell.Ee ** 2 * np.sin(2 * lamb)) / (ell.Ex ** 2 - ell.Ee ** 2 * np.cos(lamb) ** 2) ** 2
|
LAMBDA_ = - (ell.b ** 2 * ell.Ee ** 2 * np.sin(2 * lamb)) / (ell.Ex ** 2 - ell.Ee ** 2 * np.cos(lamb) ** 2) ** 2
|
||||||
|
|
||||||
# Zweite Ableitungen von ΒETA und LAMBDA
|
# Zweite Ableitungen von ΒETA und LAMBDA
|
||||||
BETA__ = ((2 * ell.ax**2 * ell.Ey**4 * np.sin(2*beta)**2) / (ell.Ex**2 - ell.Ey**2 * np.sin(beta)**2)**3) + ((2 * ell.ax**2 * ell.Ey**2 * np.cos(2*beta)) / (ell.Ex**2 - ell.Ey**2 * np.sin(beta)**2)**2)
|
BETA__ = ((2 * ell.ax ** 2 * ell.Ey ** 4 * np.sin(2 * beta) ** 2) / (
|
||||||
LAMBDA__ = (((2 * ell.b**2 * ell.Ee**4 * np.sin(2*lamb)**2) / (ell.Ex**2 - ell.Ee**2 * np.cos(lamb)**2)**3) -
|
ell.Ex ** 2 - ell.Ey ** 2 * np.sin(beta) ** 2) ** 3) + (
|
||||||
((2 * ell.b**2 * ell.Ee**2 * np.sin(2*lamb)) / (ell.Ex**2 - ell.Ee**2 * np.cos(lamb)**2)**2))
|
(2 * ell.ax ** 2 * ell.Ey ** 2 * np.cos(2 * beta)) / (
|
||||||
|
ell.Ex ** 2 - ell.Ey ** 2 * np.sin(beta) ** 2) ** 2)
|
||||||
|
LAMBDA__ = (((2 * ell.b ** 2 * ell.Ee ** 4 * np.sin(2 * lamb) ** 2) / (
|
||||||
|
ell.Ex ** 2 - ell.Ee ** 2 * np.cos(lamb) ** 2) ** 3) -
|
||||||
|
((2 * ell.b ** 2 * ell.Ee ** 2 * np.sin(2 * lamb)) / (
|
||||||
|
ell.Ex ** 2 - ell.Ee ** 2 * np.cos(lamb) ** 2) ** 2))
|
||||||
|
|
||||||
E = BETA * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2)
|
E = BETA * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2)
|
||||||
F = 0
|
F = 0
|
||||||
G = LAMBDA * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2)
|
G = LAMBDA * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2)
|
||||||
|
|
||||||
# Erste Ableitungen von E und G
|
# Erste Ableitungen von E und G
|
||||||
E_beta = BETA_ * (ell.Ey**2 * np.cos(beta)**2 + ell.Ee**2 * np.sin(lamb)**2) - BETA * ell.Ey**2 * np.sin(2*beta)
|
E_beta = BETA_ * (
|
||||||
|
ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2) - BETA * ell.Ey ** 2 * np.sin(
|
||||||
|
2 * beta)
|
||||||
E_lamb = BETA * ell.Ee ** 2 * np.sin(2 * lamb)
|
E_lamb = BETA * ell.Ee ** 2 * np.sin(2 * lamb)
|
||||||
|
|
||||||
G_beta = - LAMBDA * ell.Ey ** 2 * np.sin(2 * beta)
|
G_beta = - LAMBDA * ell.Ey ** 2 * np.sin(2 * beta)
|
||||||
G_lamb = LAMBDA_ * (ell.Ey**2 * np.cos(beta)**2 + ell.Ee**2 * np.sin(lamb)**2) + LAMBDA * ell.Ee**2 * np.sin(2*lamb)
|
G_lamb = LAMBDA_ * (
|
||||||
|
ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(lamb) ** 2) + LAMBDA * ell.Ee ** 2 * np.sin(
|
||||||
|
2 * lamb)
|
||||||
|
|
||||||
# Zweite Ableitungen von E und G
|
# Zweite Ableitungen von E und G
|
||||||
E_beta_beta = BETA__ * (ell.Ey**2 * np.cos(beta)**2 + ell.Ee**2 * np.sin(lamb)**2) - 2 * BETA_ * ell.Ey**2 * np.sin(2*beta) - 2 * BETA * ell.Ey**2 * np.cos(2*beta)
|
E_beta_beta = BETA__ * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(
|
||||||
|
lamb) ** 2) - 2 * BETA_ * ell.Ey ** 2 * np.sin(2 * beta) - 2 * BETA * ell.Ey ** 2 * np.cos(2 * beta)
|
||||||
E_beta_lamb = BETA_ * ell.Ee ** 2 * np.sin(2 * lamb)
|
E_beta_lamb = BETA_ * ell.Ee ** 2 * np.sin(2 * lamb)
|
||||||
E_lamb_lamb = 2 * BETA * ell.Ee ** 2 * np.cos(2 * lamb)
|
E_lamb_lamb = 2 * BETA * ell.Ee ** 2 * np.cos(2 * lamb)
|
||||||
|
|
||||||
G_beta_beta = - 2 * LAMBDA * ell.Ey ** 2 * np.cos(2 * beta)
|
G_beta_beta = - 2 * LAMBDA * ell.Ey ** 2 * np.cos(2 * beta)
|
||||||
G_beta_lamb = - LAMBDA_ * ell.Ey ** 2 * np.sin(2 * beta)
|
G_beta_lamb = - LAMBDA_ * ell.Ey ** 2 * np.sin(2 * beta)
|
||||||
G_lamb_lamb = LAMBDA__ * (ell.Ey**2 * np.cos(beta)**2 + ell.Ee**2 * np.sin(lamb)**2) + 2 * LAMBDA_ * ell.Ee**2 * np.sin(2*lamb) + 2 * LAMBDA * ell.Ee**2 * np.cos(2*lamb)
|
G_lamb_lamb = LAMBDA__ * (ell.Ey ** 2 * np.cos(beta) ** 2 + ell.Ee ** 2 * np.sin(
|
||||||
|
lamb) ** 2) + 2 * LAMBDA_ * ell.Ee ** 2 * np.sin(2 * lamb) + 2 * LAMBDA * ell.Ee ** 2 * np.cos(2 * lamb)
|
||||||
|
|
||||||
return (BETA, LAMBDA, E, G,
|
return (BETA, LAMBDA, E, G,
|
||||||
BETA_, LAMBDA_, BETA__, LAMBDA__,
|
BETA_, LAMBDA_, BETA__, LAMBDA__,
|
||||||
@@ -63,7 +96,7 @@ def p_coef(beta, lamb):
|
|||||||
BETA_, LAMBDA_, BETA__, LAMBDA__,
|
BETA_, LAMBDA_, BETA__, LAMBDA__,
|
||||||
E_beta, E_lamb, G_beta, G_lamb,
|
E_beta, E_lamb, G_beta, G_lamb,
|
||||||
E_beta_beta, E_beta_lamb, E_lamb_lamb,
|
E_beta_beta, E_beta_lamb, E_lamb_lamb,
|
||||||
G_beta_beta, G_beta_lamb, G_lamb_lamb) = BETA_LAMBDA(ell, beta, lamb)
|
G_beta_beta, G_beta_lamb, G_lamb_lamb) = BETA_LAMBDA(beta, lamb)
|
||||||
|
|
||||||
p_3 = - 0.5 * (E_lamb / G)
|
p_3 = - 0.5 * (E_lamb / G)
|
||||||
p_2 = (G_beta / G) - 0.5 * (E_beta / E)
|
p_2 = (G_beta / G) - 0.5 * (E_beta / E)
|
||||||
@@ -102,7 +135,7 @@ def q_coef(beta, lamb):
|
|||||||
BETA_, LAMBDA_, BETA__, LAMBDA__,
|
BETA_, LAMBDA_, BETA__, LAMBDA__,
|
||||||
E_beta, E_lamb, G_beta, G_lamb,
|
E_beta, E_lamb, G_beta, G_lamb,
|
||||||
E_beta_beta, E_beta_lamb, E_lamb_lamb,
|
E_beta_beta, E_beta_lamb, E_lamb_lamb,
|
||||||
G_beta_beta, G_beta_lamb, G_lamb_lamb) = BETA_LAMBDA(ell, beta, lamb)
|
G_beta_beta, G_beta_lamb, G_lamb_lamb) = BETA_LAMBDA(beta, lamb)
|
||||||
|
|
||||||
q_3 = - 0.5 * (G_beta / E)
|
q_3 = - 0.5 * (G_beta / E)
|
||||||
q_2 = (E_lamb / E) - 0.5 * (G_lamb / G)
|
q_2 = (E_lamb / E) - 0.5 * (G_lamb / G)
|
||||||
@@ -136,26 +169,6 @@ def buildODEbeta():
|
|||||||
|
|
||||||
return ODE
|
return ODE
|
||||||
|
|
||||||
# Panou 2013
|
|
||||||
def gha2_num(ell: EllipsoidTriaxial, beta_1: float, lamb_1: float, beta_2: float, lamb_2: float,
|
|
||||||
n: int = 16000, epsilon: float = 10**-12, iter_max: int = 30, all_points: bool = False
|
|
||||||
) -> Tuple[float, float, float] | Tuple[float, float, float, NDArray, NDArray]:
|
|
||||||
"""
|
|
||||||
|
|
||||||
:param ell: triaxiales Ellipsoid
|
|
||||||
:param beta_1: reduzierte ellipsoidische Breite Punkt 1
|
|
||||||
:param lamb_1: elllipsoidische Länge Punkt 1
|
|
||||||
:param beta_2: reduzierte ellipsoidische Breite Punkt 2
|
|
||||||
:param lamb_2: elllipsoidische Länge Punkt 2
|
|
||||||
:param n: Anzahl Schritte
|
|
||||||
:param epsilon:
|
|
||||||
:param iter_max: Maximale Anzhal Iterationen
|
|
||||||
:param all_points:
|
|
||||||
:return:
|
|
||||||
"""
|
|
||||||
|
|
||||||
# h_x, h_y, h_e entsprechen E_x, E_y, E_e
|
|
||||||
|
|
||||||
if lamb_1 != lamb_2:
|
if lamb_1 != lamb_2:
|
||||||
N = n
|
N = n
|
||||||
dlamb = lamb_2 - lamb_1
|
dlamb = lamb_2 - lamb_1
|
||||||
@@ -164,7 +177,7 @@ def gha2_num(ell: EllipsoidTriaxial, beta_1: float, lamb_1: float, beta_2: float
|
|||||||
if abs(dlamb) < 1e-15:
|
if abs(dlamb) < 1e-15:
|
||||||
beta_0 = 0.0
|
beta_0 = 0.0
|
||||||
else:
|
else:
|
||||||
(_, _, E1, G1, *_) = BETA_LAMBDA(ell, beta_1, lamb_1)
|
(_, _, E1, G1, *_) = BETA_LAMBDA(beta_1, lamb_1)
|
||||||
beta_0 = np.sqrt(G1 / E1) * cot(alpha0_sph)
|
beta_0 = np.sqrt(G1 / E1) * cot(alpha0_sph)
|
||||||
|
|
||||||
ode_lamb = buildODElamb()
|
ode_lamb = buildODElamb()
|
||||||
@@ -196,7 +209,7 @@ def gha2_num(ell: EllipsoidTriaxial, beta_1: float, lamb_1: float, beta_2: float
|
|||||||
return False, None, None, None
|
return False, None, None, None
|
||||||
|
|
||||||
alpha0_sph = sph_azimuth(beta_1, lamb_1, beta_2, lamb_2)
|
alpha0_sph = sph_azimuth(beta_1, lamb_1, beta_2, lamb_2)
|
||||||
(_, _, E1, G1, *_) = BETA_LAMBDA(ell, beta_1, lamb_1)
|
(_, _, E1, G1, *_) = BETA_LAMBDA(beta_1, lamb_1)
|
||||||
beta_p0_sph = np.sqrt(G1 / E1) * cot(alpha0_sph)
|
beta_p0_sph = np.sqrt(G1 / E1) * cot(alpha0_sph)
|
||||||
|
|
||||||
guesses = [
|
guesses = [
|
||||||
@@ -220,7 +233,7 @@ def gha2_num(ell: EllipsoidTriaxial, beta_1: float, lamb_1: float, beta_2: float
|
|||||||
|
|
||||||
integrand = np.zeros(N + 1)
|
integrand = np.zeros(N + 1)
|
||||||
for i in range(N + 1):
|
for i in range(N + 1):
|
||||||
(_, _, Ei, Gi, *_) = BETA_LAMBDA(ell, beta_arr_c[i], lamb_arr_c[i])
|
(_, _, Ei, Gi, *_) = BETA_LAMBDA(beta_arr_c[i], lamb_arr_c[i])
|
||||||
integrand[i] = np.sqrt(Ei * beta_p_arr_c[i] ** 2 + Gi)
|
integrand[i] = np.sqrt(Ei * beta_p_arr_c[i] ** 2 + Gi)
|
||||||
|
|
||||||
h = abs(dlamb) / N
|
h = abs(dlamb) / N
|
||||||
@@ -253,9 +266,9 @@ def gha2_num(ell: EllipsoidTriaxial, beta_1: float, lamb_1: float, beta_2: float
|
|||||||
beta_p_arr[i] = state[1]
|
beta_p_arr[i] = state[1]
|
||||||
|
|
||||||
(_, _, E1, G1,
|
(_, _, E1, G1,
|
||||||
*_) = BETA_LAMBDA(ell, beta_arr[0], lamb_arr[0])
|
*_) = BETA_LAMBDA(beta_arr[0], lamb_arr[0])
|
||||||
(_, _, E2, G2,
|
(_, _, E2, G2,
|
||||||
*_) = BETA_LAMBDA(ell, beta_arr[-1], lamb_arr[-1])
|
*_) = BETA_LAMBDA(beta_arr[-1], lamb_arr[-1])
|
||||||
|
|
||||||
alpha_1 = arccot(np.sqrt(E1 / G1) * beta_p_arr[0])
|
alpha_1 = arccot(np.sqrt(E1 / G1) * beta_p_arr[0])
|
||||||
alpha_2 = arccot(np.sqrt(E2 / G2) * beta_p_arr[-1])
|
alpha_2 = arccot(np.sqrt(E2 / G2) * beta_p_arr[-1])
|
||||||
@@ -263,7 +276,7 @@ def gha2_num(ell: EllipsoidTriaxial, beta_1: float, lamb_1: float, beta_2: float
|
|||||||
integrand = np.zeros(N + 1)
|
integrand = np.zeros(N + 1)
|
||||||
for i in range(N + 1):
|
for i in range(N + 1):
|
||||||
(_, _, Ei, Gi,
|
(_, _, Ei, Gi,
|
||||||
*_) = BETA_LAMBDA(ell, beta_arr[i], lamb_arr[i])
|
*_) = BETA_LAMBDA(beta_arr[i], lamb_arr[i])
|
||||||
integrand[i] = np.sqrt(Ei * beta_p_arr[i] ** 2 + Gi)
|
integrand[i] = np.sqrt(Ei * beta_p_arr[i] ** 2 + Gi)
|
||||||
|
|
||||||
h = abs(dlamb) / N
|
h = abs(dlamb) / N
|
||||||
@@ -341,9 +354,9 @@ def gha2_num(ell: EllipsoidTriaxial, beta_1: float, lamb_1: float, beta_2: float
|
|||||||
|
|
||||||
# Azimute
|
# Azimute
|
||||||
(BETA1, LAMBDA1, E1, G1,
|
(BETA1, LAMBDA1, E1, G1,
|
||||||
*_) = BETA_LAMBDA(ell, beta_arr[0], lamb_arr[0])
|
*_) = BETA_LAMBDA(beta_arr[0], lamb_arr[0])
|
||||||
(BETA2, LAMBDA2, E2, G2,
|
(BETA2, LAMBDA2, E2, G2,
|
||||||
*_) = BETA_LAMBDA(ell, beta_arr[-1], lamb_arr[-1])
|
*_) = BETA_LAMBDA(beta_arr[-1], lamb_arr[-1])
|
||||||
|
|
||||||
alpha_1 = (np.pi / 2.0) - arccot(np.sqrt(LAMBDA1 / BETA1) * lambda_p_arr[0])
|
alpha_1 = (np.pi / 2.0) - arccot(np.sqrt(LAMBDA1 / BETA1) * lambda_p_arr[0])
|
||||||
alpha_2 = (np.pi / 2.0) - arccot(np.sqrt(LAMBDA2 / BETA2) * lambda_p_arr[-1])
|
alpha_2 = (np.pi / 2.0) - arccot(np.sqrt(LAMBDA2 / BETA2) * lambda_p_arr[-1])
|
||||||
@@ -351,7 +364,7 @@ def gha2_num(ell: EllipsoidTriaxial, beta_1: float, lamb_1: float, beta_2: float
|
|||||||
integrand = np.zeros(N + 1)
|
integrand = np.zeros(N + 1)
|
||||||
for i in range(N + 1):
|
for i in range(N + 1):
|
||||||
(_, _, Ei, Gi,
|
(_, _, Ei, Gi,
|
||||||
*_) = BETA_LAMBDA(ell, beta_arr[i], lamb_arr[i])
|
*_) = BETA_LAMBDA(beta_arr[i], lamb_arr[i])
|
||||||
integrand[i] = np.sqrt(Ei + Gi * lambda_p_arr[i] ** 2)
|
integrand[i] = np.sqrt(Ei + Gi * lambda_p_arr[i] ** 2)
|
||||||
|
|
||||||
h = abs(dbeta) / N
|
h = abs(dbeta) / N
|
||||||
|
|||||||
Reference in New Issue
Block a user