Algorithmen Test

This commit is contained in:
2026-01-17 18:51:47 +01:00
parent 505aee6de7
commit 07212dcc97
8 changed files with 457 additions and 33 deletions

View File

@@ -128,14 +128,14 @@ def gha2_ES(ell: EllipsoidTriaxial, P0: NDArray, Pk: NDArray, stepLenTarget: flo
P_prev = P_next P_prev = P_next
print('Maximale Schrittanzahl erreicht.') print('Maximale Schrittanzahl erreicht.')
P_all.append(P_end) # P_all.append(P_end)
totalLen += Bogenlaenge(P_prev, P_end) totalLen += Bogenlaenge(P_prev, P_end)
p0i = ell.point_onto_ellipsoid(P0 + 10 * (P_all[1] - P0) / np.linalg.norm(P_all[1] - P0)) p0i = ell.point_onto_ellipsoid(P0 + stepLenTarget/1000 * (P_all[1] - P0) / np.linalg.norm(P_all[1] - P0))
sigma0 = (p0i - P0) / np.linalg.norm(p0i - P0) sigma0 = (p0i - P0) / np.linalg.norm(p0i - P0)
alpha0 = sigma2alpha(ell_ES, sigma0, P0) alpha0 = sigma2alpha(ell_ES, sigma0, P0)
p1i = ell.point_onto_ellipsoid(Pk - 10 * (Pk - P_all[-2]) / np.linalg.norm(Pk - P_all[-2])) p1i = ell.point_onto_ellipsoid(Pk - stepLenTarget/1000 * (Pk - P_all[-2]) / np.linalg.norm(Pk - P_all[-2]))
sigma1 = (Pk - p1i) / np.linalg.norm(Pk - p1i) sigma1 = (Pk - p1i) / np.linalg.norm(Pk - p1i)
alpha1 = sigma2alpha(ell_ES, sigma1, Pk) alpha1 = sigma2alpha(ell_ES, sigma1, Pk)

View File

@@ -1,6 +1,6 @@
import numpy as np import numpy as np
from ellipsoide import EllipsoidTriaxial from ellipsoide import EllipsoidTriaxial
from .panou import louville_constant, func_sigma_ell, gha1_ana from GHA_triaxial.panou import louville_constant, func_sigma_ell, gha1_ana
import plotly.graph_objects as go import plotly.graph_objects as go
import winkelumrechnungen as wu import winkelumrechnungen as wu
@@ -19,24 +19,31 @@ def gha1_approx(ell: EllipsoidTriaxial, p0: np.ndarray, alpha0: float, s: float,
points = [p0] points = [p0]
alphas = [alpha0] alphas = [alpha0]
s_curr = 0.0 s_curr = 0.0
while s_curr < s: while s_curr < s:
ds_step = min(ds, s - s_curr) ds_step = min(ds, s - s_curr)
if ds_step < 1e-8: if ds_step < 1e-8:
break break
p1 = points[-1] p1 = points[-1]
alpha1 = alphas[-1] alpha1 = alphas[-1]
sigma = func_sigma_ell(ell, p1, alpha1) sigma = func_sigma_ell(ell, p1, alpha1)
p2 = p1 + ds_step * sigma p2 = p1 + ds_step * sigma
p2 = ell.point_onto_ellipsoid(p2) p2 = ell.point_onto_ellipsoid(p2)
ds_step = np.linalg.norm(p2 - p1)
points.append(p2)
dalpha = 1e-6 dalpha = 1e-6
l2 = louville_constant(ell, p2, alpha1) l2 = louville_constant(ell, p2, alpha1)
dl_dalpha = (louville_constant(ell, p2, alpha1+dalpha) - l2) / dalpha dl_dalpha = (louville_constant(ell, p2, alpha1+dalpha) - l2) / dalpha
alpha2 = alpha1 + (l0 - l2) / dl_dalpha alpha2 = alpha1 + (l0 - l2) / dl_dalpha
points.append(p2)
alphas.append(alpha2) alphas.append(alpha2)
ds_step = np.linalg.norm(p2 - p1)
s_curr += ds_step s_curr += ds_step
if s_curr > 10000000:
pass
if all_points: if all_points:
return points[-1], alphas[-1], np.array(points) return points[-1], alphas[-1], np.array(points)
@@ -71,10 +78,10 @@ def show_points(points: NDArray, p0: NDArray, p1: NDArray):
if __name__ == '__main__': if __name__ == '__main__':
ell = EllipsoidTriaxial.init_name("BursaSima1980round") ell = EllipsoidTriaxial.init_name("BursaSima1980round")
P0 = ell.para2cart(0, 0) P0 = ell.para2cart(0.2, 0.3)
alpha0 = wu.deg2rad(90) alpha0 = wu.deg2rad(35)
s = 1000000 s = 13000000
P1_ana, alpha1_ana = gha1_ana(ell, P0, alpha0, s, maxM=60, maxPartCircum=32) P1_app, alpha1_app, points = gha1_approx(ell, P0, alpha0, s, ds=10000, all_points=True)
P1_app, alpha1_app, points = gha1_approx(ell, P0, alpha0, s, ds=5000, all_points=True) P1_ana, alpha1_ana = gha1_ana(ell, P0, alpha0, s, maxM=60, maxPartCircum=16)
show_points(points, P0, P1_ana) show_points(points, P0, P1_ana)
print(np.linalg.norm(P1_app - P1_ana)) print(np.linalg.norm(P1_app - P1_ana))

View File

@@ -0,0 +1,120 @@
import numpy as np
from ellipsoide import EllipsoidTriaxial
from panou import louville_constant, func_sigma_ell, gha1_ana
import plotly.graph_objects as go
import winkelumrechnungen as wu
from numpy import sin, cos, arccos
def Bogenlaenge(P1: NDArray, P2: NDArray) -> float:
"""
Berechnung der mittleren Bogenlänge zwischen zwei kartesischen Punkten
:param P1: kartesische Koordinate Punkt 1
:param P2: kartesische Koordinate Punkt 2
:return: Bogenlänge s
"""
R1 = np.linalg.norm(P1)
R2 = np.linalg.norm(P2)
R = 0.5 * (R1 + R2)
if P1 @ P2 / (R1 * R2) > 1:
s = np.linalg.norm(P1 - P2)
else:
theta = arccos(P1 @ P2 / (R1 * R2))
s = float(R * theta)
return s
def gha1_approx2(ell: EllipsoidTriaxial, p0: np.ndarray, alpha0: float, s: float, ds: float, all_points: bool = False) -> Tuple[NDArray, float] | Tuple[NDArray, float, NDArray]:
"""
Berechung einer Näherungslösung der ersten Hauptaufgabe
:param ell: Ellipsoid
:param p0: Anfangspunkt
:param alpha0: Azimut im Anfangspunkt
:param s: Strecke bis zum Endpunkt
:param ds: Länge einzelner Streckenelemente
:param all_points: Ausgabe aller Punkte als Array?
:return: Endpunkt, Azimut im Endpunkt, optional alle Punkte
"""
l0 = louville_constant(ell, p0, alpha0)
points = [p0]
alphas = [alpha0]
s_curr = 0.0
while s_curr < s:
ds_target = min(ds, s - s_curr)
if ds_target < 1e-8:
break
p1 = points[-1]
alpha1 = alphas[-1]
alpha1_mid = alphas[-1]
p2 = points[-1]
alpha2 = alphas[-1]
i = 0
while i < 2:
i += 1
sigma = func_sigma_ell(ell, p1, alpha1_mid)
p2_new = p1 + ds_target * sigma
p2_new = ell.point_onto_ellipsoid(p2_new)
p2 = p2_new
j = 0
while j < 2:
j += 1
dalpha = 1e-6
l2 = louville_constant(ell, p2, alpha2)
dl_dalpha = (louville_constant(ell, p2, alpha2 + dalpha) - l2) / dalpha
alpha2_new = alpha2 + (l0 - l2) / dl_dalpha
alpha2 = alpha2_new
alpha1_mid = (alpha1 + alpha2) / 2
points.append(p2)
alphas.append(alpha2)
ds_actual = np.linalg.norm(p2 - p1)
s_curr += ds_actual
if s_curr > 10000000:
pass
if all_points:
return points[-1], alphas[-1], np.array(points)
else:
return points[-1], alphas[-1]
def show_points(points: NDArray, p0: NDArray, p1: NDArray):
"""
Anzeigen der Punkte
:param points: Array aller approximierten Punkte
:param p0: Startpunkt
:param p1: wahrer Endpunkt
"""
fig = go.Figure()
fig.add_scatter3d(x=points[:, 0], y=points[:, 1], z=points[:, 2],
mode='lines', line=dict(color="red", width=3), name="Approx")
fig.add_scatter3d(x=[p0[0]], y=[p0[1]], z=[p0[2]],
mode='markers', marker=dict(color="green"), name="P0")
fig.add_scatter3d(x=[p1[0]], y=[p1[1]], z=[p1[2]],
mode='markers', marker=dict(color="green"), name="P1")
fig.update_layout(
scene=dict(xaxis_title='X [km]',
yaxis_title='Y [km]',
zaxis_title='Z [km]',
aspectmode='data'),
title="CHAMP")
fig.show()
if __name__ == '__main__':
ell = EllipsoidTriaxial.init_name("BursaSima1980round")
P0 = ell.para2cart(0.2, 0.3)
alpha0 = wu.deg2rad(35)
s = 13000000
P1_app, alpha1_app, points = gha1_approx2(ell, P0, alpha0, s, ds=10000, all_points=True)
P1_ana, alpha1_ana = gha1_ana(ell, P0, alpha0, s, maxM=60, maxPartCircum=16)
show_points(points, P0, P1_ana)
print(np.linalg.norm(P1_app - P1_ana))

View File

@@ -9,7 +9,7 @@ from typing import Tuple
from utils import sigma2alpha from utils import sigma2alpha
def gha2(ell: EllipsoidTriaxial, p0: NDArray, p1: NDArray, ds: float, all_points: bool = False) -> Tuple[float, float, float] | Tuple[float, float, float, NDArray]: def gha2_approx(ell: EllipsoidTriaxial, p0: NDArray, p1: NDArray, ds: float, all_points: bool = False) -> Tuple[float, float, float] | Tuple[float, float, float, NDArray]:
""" """
Numerische Approximation für die zweite Hauptaufgabe Numerische Approximation für die zweite Hauptaufgabe
:param ell: Ellipsoid :param ell: Ellipsoid
@@ -83,15 +83,15 @@ def show_points(points: NDArray, points_app: NDArray, p0: NDArray, p1: NDArray):
if __name__ == '__main__': if __name__ == '__main__':
ell = EllipsoidTriaxial.init_name("KarneyTest2024") ell = EllipsoidTriaxial.init_name("BursaSima1980round")
beta0, lamb0 = (0.2, 0.1) beta0, lamb0 = (0.2, 0.1)
P0 = ell.ell2cart(beta0, lamb0) P0 = ell.ell2cart(beta0, lamb0)
beta1, lamb1 = (0.7, 0.3) beta1, lamb1 = (0.7, 0.3)
P1 = ell.ell2cart(beta1, lamb1) P1 = ell.ell2cart(beta1, lamb1)
alpha0_app, alpha1_app, s_app, points = gha2(ell, P0, P1, ds=1e-4, all_points=True) alpha0_app, alpha1_app, s_app, points = gha2_approx(ell, P0, P1, ds=1000, all_points=True)
print("done")
alpha0, alpha1, s, betas, lambs = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=5000, all_points=True) alpha0, alpha1, s, betas, lambs = gha2_num(ell, beta0, lamb0, beta1, lamb1, n=5000, all_points=True)
points_ana = [] points_ana = []
for beta, lamb in zip(betas, lambs): for beta, lamb in zip(betas, lambs):

View File

@@ -26,7 +26,7 @@ def get_random_examples(num: int, seed: int = None) -> List:
""" """
if seed is not None: if seed is not None:
random.seed(seed) random.seed(seed)
with open("Karney_2024_Testset.txt") as datei: with open(r"C:\Users\moell\OneDrive\Desktop\Vorlesungen\Master-Projekt\Python_Masterprojekt\GHA_triaxial\Karney_2024_Testset.txt") as datei:
lines = datei.readlines() lines = datei.readlines()
examples = [] examples = []
for i in range(num): for i in range(num):

View File

@@ -245,7 +245,7 @@ def gha1_ana_step(ell: EllipsoidTriaxial, point: NDArray, alpha0: float, s: floa
return p1, alpha1 return p1, alpha1
def gha1_ana(ell: EllipsoidTriaxial, point: NDArray, alpha0: float, s: float, maxM: int, maxPartCircum: int = 4) -> Tuple[NDArray, float]: def gha1_ana(ell: EllipsoidTriaxial, point: NDArray, alpha0: float, s: float, maxM: int, maxPartCircum: int = 16) -> Tuple[NDArray, float]:
if s > np.pi / maxPartCircum * ell.ax: if s > np.pi / maxPartCircum * ell.ax:
s /= 2 s /= 2
point_step, alpha_step = gha1_ana(ell, point, alpha0, s, maxM, maxPartCircum) point_step, alpha_step = gha1_ana(ell, point, alpha0, s, maxM, maxPartCircum)
@@ -286,7 +286,7 @@ def alpha_ell2para(ell: EllipsoidTriaxial, beta: float, lamb: float, alpha_ell:
alpha_para = arctan2(p_para @ sigma_ell, q_para @ sigma_ell) alpha_para = arctan2(p_para @ sigma_ell, q_para @ sigma_ell)
sigma_para = p_para * sin(alpha_para) + q_para * cos(alpha_para) sigma_para = p_para * sin(alpha_para) + q_para * cos(alpha_para)
if np.linalg.norm(sigma_para - sigma_ell) > 1e-12: if np.linalg.norm(sigma_para - sigma_ell) > 1e-9:
raise Exception("Alpha Umrechnung fehlgeschlagen") raise Exception("Alpha Umrechnung fehlgeschlagen")
return u, v, alpha_para return u, v, alpha_para
@@ -335,7 +335,7 @@ if __name__ == "__main__":
# diffs_panou[mask_360] = np.abs(diffs_panou[mask_360] - 360) # diffs_panou[mask_360] = np.abs(diffs_panou[mask_360] - 360)
# print(diffs_panou) # print(diffs_panou)
ell = ellipsoide.EllipsoidTriaxial.init_name("KarneyTest2024") ell: EllipsoidTriaxial = ellipsoide.EllipsoidTriaxial.init_name("KarneyTest2024")
diffs_karney = [] diffs_karney = []
# examples_karney = ne_karney.get_examples((30499, 30500, 40500)) # examples_karney = ne_karney.get_examples((30499, 30500, 40500))
examples_karney = ne_karney.get_random_examples(20) examples_karney = ne_karney.get_random_examples(20)
@@ -343,12 +343,12 @@ if __name__ == "__main__":
beta0, lamb0, alpha0_ell, beta1, lamb1, alpha1_ell, s = example beta0, lamb0, alpha0_ell, beta1, lamb1, alpha1_ell, s = example
P0 = ell.ell2cart(beta0, lamb0) P0 = ell.ell2cart(beta0, lamb0)
P1_num, alpha1_num = gha1_num(ell, P0, alpha0_ell, s, 5000) P1_num, alpha1_num = gha1_num(ell, P0, alpha0_ell, s, 10000)
beta1_num, lamb1_num = ell.cart2ell(P1_num) beta1_num, lamb1_num = ell.cart2ell(P1_num)
try: try:
_, _, alpha0_para = alpha_ell2para(ell, beta0, lamb0, alpha0_ell) _, _, alpha0_para = alpha_ell2para(ell, beta0, lamb0, alpha0_ell)
P1_ana, alpha1_ana = gha1_ana(ell, P0, alpha0_para, s, 30, maxPartCircum=16) P1_ana, alpha1_ana = gha1_ana(ell, P0, alpha0_para, s, 45, maxPartCircum=32)
beta1_ana, lamb1_ana = ell.cart2ell(P1_ana) beta1_ana, lamb1_ana = ell.cart2ell(P1_ana)
except: except:
beta1_ana, lamb1_ana = np.inf, np.inf beta1_ana, lamb1_ana = np.inf, np.inf

267
algorithms_test.py Normal file
View File

@@ -0,0 +1,267 @@
import time
import pickle
import numpy as np
from numpy import nan
import winkelumrechnungen as wu
import os
from contextlib import contextmanager, redirect_stdout, redirect_stderr
from ellipsoide import EllipsoidTriaxial
from GHA_triaxial.panou import alpha_ell2para, alpha_para2ell
from GHA_triaxial.panou import gha1_num, gha1_ana
from GHA_triaxial.approx_gha1 import gha1_approx
from GHA_triaxial.panou_2013_2GHA_num import gha2_num
from GHA_triaxial.ES_gha2 import gha2_ES
from GHA_triaxial.approx_gha2 import gha2_approx
from GHA_triaxial.numeric_examples_panou import get_random_examples as get_examples_panou
from GHA_triaxial.numeric_examples_karney import get_random_examples as get_examples_karney
@contextmanager
def suppress_print():
with open(os.devnull, 'w') as fnull:
with redirect_stdout(fnull), redirect_stderr(fnull):
yield
# steps_gha1_num = [2000, 5000, 10000, 20000]
# maxM_gha1_ana = [20, 40, 60]
# parts_gha1_ana = [4, 8, 16]
# dsPart_gha1_approx = [600, 1250, 6000, 60000] # entspricht bei der Erde ca. 10000, 5000, 1000, 100
#
# steps_gha2_num = [2000, 5000, 10000, 20000]
# dsPart_gha2_ES = [600, 1250, 6000] # entspricht bei der Erde ca. 10000, 5000, 1000
# dsPart_gha2_approx = [600, 1250, 6000, 60000] # entspricht bei der Erde ca. 10000, 5000, 1000, 100
steps_gha1_num = [2000, 5000]
maxM_gha1_ana = [20, 40]
parts_gha1_ana = [4, 8]
dsPart_gha1_approx = [600, 1250]
steps_gha2_num = [2000, 5000]
dsPart_gha2_ES = [20]
dsPart_gha2_approx = [600, 1250]
ell_karney: EllipsoidTriaxial = EllipsoidTriaxial.init_name("KarneyTest2024")
ell_panou: EllipsoidTriaxial = EllipsoidTriaxial.init_name("BursaSima1980round")
results_karney = {}
results_panou = {}
examples_karney = get_examples_karney(2, 42)
examples_panou = get_examples_panou(2, 42)
for example in examples_karney:
example_results = {}
beta0, lamb0, alpha0_ell, beta1, lamb1, alpha1_ell, s = example
P0 = ell_karney.ell2cart(beta0, lamb0)
P1 = ell_karney.ell2cart(beta1, lamb1)
_, _, alpha0_para = alpha_ell2para(ell_karney, beta0, lamb0, alpha0_ell)
for steps in steps_gha1_num:
start = time.perf_counter()
try:
P1_num, alpha1_num_1 = gha1_num(ell_karney, P0, alpha0_ell, s, num=steps)
end = time.perf_counter()
beta1_num, lamb1_num = ell_karney.cart2ell(P1_num)
d_beta1 = abs(wu.rad2deg(beta1_num - beta1)) / 3600
d_lamb1 = abs(wu.rad2deg(lamb1_num - lamb1)) / 3600
d_alpha1 = abs(wu.rad2deg(alpha1_num_1 - alpha1_ell)) / 3600
d_time = end - start
example_results[f"GHA1_num_{steps}"] = (d_beta1, d_lamb1, d_alpha1, d_time)
except Exception as e:
print(e)
example_results[f"GHA1_num_{steps}"] = (nan, nan, nan, nan)
for maxM in maxM_gha1_ana:
for parts in parts_gha1_ana:
start = time.perf_counter()
try:
P1_ana, alpha1_ana_para = gha1_ana(ell_karney, P0, alpha0_para, s, maxM=maxM, maxPartCircum=parts)
end = time.perf_counter()
beta1_ana, lamb1_ana = ell_karney.cart2ell(P1_ana)
_, _, alpha1_ana_ell = alpha_para2ell(ell_karney, beta1_ana, lamb1_ana, alpha1_ana_para)
d_beta1 = abs(wu.rad2deg(beta1_ana - beta1)) / 3600
d_lamb1 = abs(wu.rad2deg(lamb1_ana - lamb1)) / 3600
d_alpha1 = abs(wu.rad2deg(alpha1_ana_ell - alpha1_ell)) / 3600
d_time = end - start
example_results[f"GHA1_ana_{maxM}_{parts}"] = (d_beta1, d_lamb1, d_alpha1, d_time)
except Exception as e:
print(e)
example_results[f"GHA1_ana_{maxM}_{parts}"] = (nan, nan, nan, nan)
for dsPart in dsPart_gha1_approx:
ds = ell_karney.ax/dsPart
start = time.perf_counter()
try:
P1_approx, alpha1_approx = gha1_approx(ell_karney, P0, alpha0_ell, s, ds=ds)
end = time.perf_counter()
beta1_approx, lamb1_approx = ell_karney.cart2ell(P1_approx)
d_beta1 = abs(wu.rad2deg(beta1_approx - beta1)) / 3600
d_lamb1 = abs(wu.rad2deg(lamb1_approx - lamb1)) / 3600
d_alpha1 = abs(wu.rad2deg(alpha1_approx - alpha1_ell)) / 3600
d_time = end - start
example_results[f"GHA1_approx_{ds:.3f}"] = (d_beta1, d_lamb1, d_alpha1, d_time)
except Exception as e:
print(e)
example_results[f"GHA1_approx_{ds:.3f}"] = (nan, nan, nan, nan)
for steps in steps_gha2_num:
start = time.perf_counter()
try:
alpha0_num, alpha1_num_2, s_num = gha2_num(ell_karney, beta0, lamb0, beta1, lamb1, n=steps)
end = time.perf_counter()
d_alpha0 = abs(wu.rad2deg(alpha0_num - alpha0_ell)) / 3600
d_alpha1 = abs(wu.rad2deg(alpha1_num_2 - alpha1_ell)) / 3600
d_s = abs(s_num - s) / 1000
d_time = end - start
example_results[f"GHA2_num_{steps}"] = (d_alpha0, d_alpha1, d_s, d_time)
except Exception as e:
print(e)
example_results[f"GHA2_num_{steps}"] = (nan, nan, nan, nan)
for dsPart in dsPart_gha2_ES:
ds = ell_karney.ax/dsPart
start = time.perf_counter()
try:
with suppress_print():
alpha0_ES, alpha1_ES, s_ES = gha2_ES(ell_karney, P0, P1, stepLenTarget=ds)
end = time.perf_counter()
d_alpha0 = abs(wu.rad2deg(alpha0_ES - alpha0_ell)) / 3600
d_alpha1 = abs(wu.rad2deg(alpha1_ES - alpha1_ell)) / 3600
d_s = abs(s_ES - s) / 1000
d_time = end - start
example_results[f"GHA2_ES_{ds:.3f}"] = (d_alpha0, d_alpha1, d_s, d_time)
except Exception as e:
print(e)
example_results[f"GHA2_ES_{ds:.3f}"] = (nan, nan, nan, nan)
for dsPart in dsPart_gha2_approx:
ds = ell_karney.ax/dsPart
start = time.perf_counter()
try:
alpha0_approx, alpha1_approx, s_approx = gha2_approx(ell_karney, P0, P1, ds=ds)
end = time.perf_counter()
d_alpha0 = abs(wu.rad2deg(alpha0_approx - alpha0_ell)) / 3600
d_alpha1 = abs(wu.rad2deg(alpha1_approx - alpha1_ell)) / 3600
d_s = abs(s_approx - s) / 1000
d_time = end - start
example_results[f"GHA2_approx_{ds:.3f}"] = (d_alpha0, d_alpha1, d_s, d_time)
except Exception as e:
print(e)
example_results[f"GHA2_approx_{ds:.3f}"] = (nan, nan, nan, nan)
results_karney[f"beta0: {wu.rad2deg(beta0):.3f}, lamb0: {wu.rad2deg(lamb0):.3f}, alpha0: {wu.rad2deg(alpha0_ell):.3f}, s: {s}"] = example_results
for example in examples_panou:
example_results = {}
beta0, lamb0, beta1, lamb1, _, alpha0_ell, alpha1_ell, s = example
P0 = ell_panou.ell2cart(beta0, lamb0)
P1 = ell_panou.ell2cart(beta1, lamb1)
_, _, alpha0_para = alpha_ell2para(ell_panou, beta0, lamb0, alpha0_ell)
for steps in steps_gha1_num:
start = time.perf_counter()
try:
P1_num, alpha1_num_1 = gha1_num(ell_panou, P0, alpha0_ell, s, num=steps)
end = time.perf_counter()
beta1_num, lamb1_num = ell_panou.cart2ell(P1_num)
d_beta1 = abs(wu.rad2deg(beta1_num - beta1)) / 3600
d_lamb1 = abs(wu.rad2deg(lamb1_num - lamb1)) / 3600
d_alpha1 = abs(wu.rad2deg(alpha1_num_1 - alpha1_ell)) / 3600
d_time = end - start
example_results[f"GHA1_num_{steps}"] = (d_beta1, d_lamb1, d_alpha1, d_time)
except Exception as e:
print(e)
example_results[f"GHA1_num_{steps}"] = (nan, nan, nan, nan)
for maxM in maxM_gha1_ana:
for parts in parts_gha1_ana:
start = time.perf_counter()
try:
P1_ana, alpha1_ana_para = gha1_ana(ell_panou, P0, alpha0_para, s, maxM=maxM, maxPartCircum=parts)
end = time.perf_counter()
beta1_ana, lamb1_ana = ell_panou.cart2ell(P1_ana)
_, _, alpha1_ana = alpha_para2ell(ell_panou, beta1_ana, lamb1_ana, alpha1_ana_para)
d_beta1 = abs(wu.rad2deg(beta1_ana - beta1)) / 3600
d_lamb1 = abs(wu.rad2deg(lamb1_ana - lamb1)) / 3600
d_alpha1 = abs(wu.rad2deg(alpha1_ana - alpha1_ell)) / 3600
d_time = end - start
example_results[f"GHA1_ana_{maxM}_{parts}"] = (d_beta1, d_lamb1, d_alpha1, d_time)
except Exception as e:
print(e)
example_results[f"GHA1_ana_{maxM}_{parts}"] = (nan, nan, nan, nan)
for dsPart in dsPart_gha1_approx:
ds = ell_panou.ax/dsPart
start = time.perf_counter()
try:
P1_approx, alpha1_approx = gha1_approx(ell_panou, P0, alpha0_ell, s, ds=ds)
end = time.perf_counter()
beta1_approx, lamb1_approx = ell_panou.cart2ell(P1_approx)
d_beta1 = abs(wu.rad2deg(beta1_approx - beta1)) / 3600
d_lamb1 = abs(wu.rad2deg(lamb1_approx - lamb1)) / 3600
d_alpha1 = abs(wu.rad2deg(alpha1_approx - alpha1_ell)) / 3600
d_time = end - start
example_results[f"GHA1_approx_{ds:.3f}"] = (d_beta1, d_lamb1, d_alpha1, d_time)
except Exception as e:
print(e)
example_results[f"GHA1_approx_{ds:.3f}"] = (nan, nan, nan, nan)
for steps in steps_gha2_num:
start = time.perf_counter()
try:
alpha0_num, alpha1_num_2, s_num = gha2_num(ell_panou, beta0, lamb0, beta1, lamb1, n=steps)
end = time.perf_counter()
d_alpha0 = abs(wu.rad2deg(alpha0_num - alpha0_ell)) / 3600
d_alpha1 = abs(wu.rad2deg(alpha1_num_2 - alpha1_ell)) / 3600
d_s = abs(s_num - s) / 1000
d_time = end - start
example_results[f"GHA2_num_{steps}"] = (d_alpha0, d_alpha1, d_s, d_time)
except Exception as e:
print(e)
example_results[f"GHA2_num_{steps}"] = (nan, nan, nan, nan)
for dsPart in dsPart_gha2_ES:
ds = ell_panou.ax/dsPart
start = time.perf_counter()
try:
with suppress_print():
alpha0_ES, alpha1_ES, s_ES = gha2_ES(ell_panou, P0, P1, stepLenTarget=ds)
end = time.perf_counter()
d_alpha0 = abs(wu.rad2deg(alpha0_ES - alpha0_ell)) / 3600
d_alpha1 = abs(wu.rad2deg(alpha1_ES - alpha1_ell)) / 3600
d_s = abs(s_ES - s) / 1000
d_time = end - start
example_results[f"GHA2_ES_{ds:.3f}"] = (d_alpha0, d_alpha1, d_s, d_time)
except Exception as e:
print(e)
example_results[f"GHA2_ES_{ds:.3f}"] = (nan, nan, nan, nan)
for dsPart in dsPart_gha2_approx:
ds = ell_panou.ax/dsPart
start = time.perf_counter()
try:
alpha0_approx, alpha1_approx, s_approx = gha2_approx(ell_panou, P0, P1, ds=ds)
end = time.perf_counter()
d_alpha0 = abs(wu.rad2deg(alpha0_approx - alpha0_ell)) / 3600
d_alpha1 = abs(wu.rad2deg(alpha1_approx - alpha1_ell)) / 3600
d_s = abs(s_approx - s) / 1000
d_time = end - start
example_results[f"GHA2_approx_{ds:.3f}"] = (d_alpha0, d_alpha1, d_s, d_time)
except Exception as e:
print(e)
example_results[f"GHA2_approx_{ds:.3f}"] = (nan, nan, nan, nan)
results_panou[f"beta0: {wu.rad2deg(beta0):.3f}, lamb0: {wu.rad2deg(lamb0):.3f}, alpha0: {wu.rad2deg(alpha0_ell):.3f}, s: {s}"] = example_results
print(results_karney)
with open("results_karney.pkl", "wb") as f:
pickle.dump(results_karney, f)
print(results_panou)
with open("results_panou.pkl", "wb") as f:
pickle.dump(results_panou, f)

View File

@@ -327,14 +327,45 @@ class EllipsoidTriaxial:
x, y, z = point x, y, z = point
beta, lamb = self.cart2ell_panou(point) beta, lamb = self.cart2ell_panou(point)
delta_ell = np.array([np.inf, np.inf]).T delta_ell = np.array([np.inf, np.inf]).T
tiny = 1e-30
i = 0 i = 0
while np.sum(delta_ell) > eps and i < maxI: while np.linalg.norm(delta_ell) > eps and i < maxI:
if abs(y) < eps:
delta_y = 1e-4
best_delta = np.inf
while True:
try:
y1 = y - delta_y
beta1, lamb1 = self.cart2ell(np.array([x, y1, z]))
point1 = self.ell2cart(beta1, lamb1)
y2 = y + delta_y
beta2, lamb2 = self.cart2ell(np.array([x, y2, z]))
point2 = self.ell2cart(beta2, lamb2)
pointM = (point1 + point2) / 2
actual_delta = np.linalg.norm(point-pointM)
except:
actual_delta = np.inf
if actual_delta < best_delta:
best_delta = actual_delta
delta_y /= 10
else:
delta_y *= 10
y1 = y - delta_y
beta1, lamb1 = self.cart2ell(np.array([x, y1, z]))
return beta1, lamb1
x0, y0, z0 = self.ell2cart(beta, lamb) x0, y0, z0 = self.ell2cart(beta, lamb)
delta_l = np.array([x-x0, y-y0, z-z0]).T delta_l = np.array([x-x0, y-y0, z-z0]).T
B = self.Ex ** 2 * cos(beta) ** 2 + self.Ee ** 2 * sin(beta) ** 2 B = max(self.Ex ** 2 * cos(beta) ** 2 + self.Ee ** 2 * sin(beta) ** 2, tiny)
L = self.Ex ** 2 - self.Ee ** 2 * cos(lamb) ** 2 L = max(self.Ex ** 2 - self.Ee ** 2 * cos(lamb) ** 2, tiny)
J = np.array([[(-self.ax * self.Ey ** 2) / (2 * self.Ex) * sin(2 * beta) / sqrt(B) * cos(lamb), J = np.array([[(-self.ax * self.Ey ** 2) / (2 * self.Ex) * sin(2 * beta) / sqrt(B) * cos(lamb),
-self.ax / self.Ex * sqrt(B) * sin(lamb)], -self.ax / self.Ex * sqrt(B) * sin(lamb)],
@@ -345,23 +376,21 @@ class EllipsoidTriaxial:
N = J.T @ J N = J.T @ J
det = N[0, 0] * N[1, 1] - N[0, 1] * N[1, 0] det = N[0, 0] * N[1, 1] - N[0, 1] * N[1, 0]
if abs(det) < eps:
det = eps
N_inv = 1 / det * np.array([[N[1, 1], -N[0, 1]], [-N[1, 0], N[0, 0]]]) N_inv = 1 / det * np.array([[N[1, 1], -N[0, 1]], [-N[1, 0], N[0, 0]]])
delta_ell = N_inv @ J.T @ delta_l delta_ell = N_inv @ J.T @ delta_l
beta += delta_ell[0] beta += delta_ell[0]
lamb += delta_ell[1] lamb += delta_ell[1]
i += 1 i += 1
if i == maxI: if i == maxI:
raise Exception("Umrechung ist nicht konvergiert") raise Exception("Umrechnung ist nicht konvergiert")
point_n = self.ell2cart(beta, lamb) point_n = self.ell2cart(beta, lamb)
delta_r = np.linalg.norm(point - point_n, axis=-1) delta_r = np.linalg.norm(point - point_n, axis=-1)
if delta_r > 1e-4: if delta_r > 1e-3:
# raise Exception("Fehler in der Umrechnung cart2ell") raise Exception("Fehler in der Umrechnung cart2ell")
print(f"Fehler in der Umrechnung cart2ell, deltaR = {delta_r}m")
return beta, lamb return beta, lamb
@@ -395,9 +424,9 @@ class EllipsoidTriaxial:
t1, t2 = self.func_t12(point) t1, t2 = self.func_t12(point)
num_beta = max(t1 - self.b ** 2, 0) num_beta = max(t1 - self.b ** 2, 0)
den_beta = max(self.ay ** 2 - t1, 0) den_beta = max(self.ay ** 2 - t1, 1e-30)
num_lamb = max(t2 - self.ay ** 2, 0) num_lamb = max(t2 - self.ay ** 2, 0)
den_lamb = max(self.ax ** 2 - t2, 0) den_lamb = max(self.ax ** 2 - t2, 1e-30)
beta = arctan(sqrt(num_beta / den_beta)) beta = arctan(sqrt(num_beta / den_beta))
lamb = arctan(sqrt(num_lamb / den_lamb)) lamb = arctan(sqrt(num_lamb / den_lamb))
@@ -675,7 +704,7 @@ class EllipsoidTriaxial:
if __name__ == "__main__": if __name__ == "__main__":
ell = EllipsoidTriaxial.init_name("BursaSima1980round") ell = EllipsoidTriaxial.init_name("BursaSima1980")
diff_list = [] diff_list = []
diffs_para = [] diffs_para = []
diffs_ell = [] diffs_ell = []
@@ -711,6 +740,7 @@ if __name__ == "__main__":
diffs_geod = np.array(diffs_geod) diffs_geod = np.array(diffs_geod)
pass pass
points = np.array(points) points = np.array(points)
fig = plt.figure() fig = plt.figure()
ax = fig.add_subplot(projection='3d') ax = fig.add_subplot(projection='3d')