Push
This commit is contained in:
@@ -39,7 +39,7 @@ class Zuverlaessigkeit:
|
||||
def globaltest(r_gesamt, sigma0_apost, sigma0_apriori, alpha):
|
||||
T_G = (sigma0_apost ** 2) / (sigma0_apriori ** 2)
|
||||
F_krit = stats.f.ppf(1 - alpha, r_gesamt, 10 ** 9)
|
||||
H0 = T_G <= F_krit
|
||||
H0 = T_G < F_krit
|
||||
|
||||
if H0:
|
||||
interpretation = (
|
||||
@@ -72,10 +72,17 @@ class Zuverlaessigkeit:
|
||||
ri = np.asarray(ri, float).reshape(-1)
|
||||
labels = list(labels)
|
||||
|
||||
# Grobfehlerabschätzung:
|
||||
ri_ = np.where(ri == 0, np.nan, ri)
|
||||
GF = -v / ri_
|
||||
|
||||
# Standardabweichungen der Residuen
|
||||
qv = np.diag(Q_vv).astype(float)
|
||||
s_vi = float(s0_apost) * np.sqrt(qv)
|
||||
|
||||
# Normierte Verbesserung NV
|
||||
NV = np.abs(v) / s_vi
|
||||
|
||||
# Quantile k und kA (zweiseitig),
|
||||
k = float(norm.ppf(1 - alpha / 2))
|
||||
kA = float(norm.ppf(1 - beta)) # (Testmacht 1-β)
|
||||
@@ -83,22 +90,10 @@ class Zuverlaessigkeit:
|
||||
# Nichtzentralitätsparameter δ0
|
||||
nzp = k + kA
|
||||
|
||||
# Normierte Verbesserung NV
|
||||
NV = np.abs(v) / s_vi
|
||||
|
||||
# Grenzen für v_i
|
||||
v_grenz = k * s_vi
|
||||
v_min = -v_grenz
|
||||
v_max = v_grenz
|
||||
|
||||
# Grobfehlerabschätzung:
|
||||
ri_safe = np.where(ri == 0, np.nan, ri)
|
||||
GF = -v / ri_safe
|
||||
|
||||
# Grenzwert für die Aufdeckbarkeit eines GF (GRZW)
|
||||
GRZW_i = (s_vi / ri_safe) * k
|
||||
GRZW_i = (s_vi / ri_) * nzp
|
||||
|
||||
auffaellig = NV > k
|
||||
auffaellig = NV > nzp
|
||||
|
||||
Lokaltest_innere_Zuv = pd.DataFrame({
|
||||
"Beobachtung": labels,
|
||||
@@ -108,59 +103,11 @@ class Zuverlaessigkeit:
|
||||
"k": k,
|
||||
"NV_i": NV,
|
||||
"auffaellig": auffaellig,
|
||||
"v_min": v_min,
|
||||
"v_max": v_max,
|
||||
"GF_i": GF,
|
||||
"GRZW_v": v_grenz, # = k*s_vi
|
||||
"GRZW_i": GRZW_i, # = (s_vi/r_i)*k
|
||||
"GRZW_i": GRZW_i,
|
||||
"alpha": alpha,
|
||||
"beta": beta,
|
||||
"kA": kA,
|
||||
"δ0": nzp,
|
||||
})
|
||||
return Lokaltest_innere_Zuv
|
||||
|
||||
|
||||
def EinflussPunktlage(df_lokaltest):
|
||||
df = df_lokaltest.copy()
|
||||
|
||||
r = df["r_i"].astype(float).to_numpy()
|
||||
GF = df["GF_i"].astype(float).to_numpy()
|
||||
nzp = df["δ0"].astype(float).to_numpy()
|
||||
|
||||
EF = np.sqrt((1 - r) / r) * nzp
|
||||
EP = (1 - r) * GF
|
||||
|
||||
df["δ0"] = nzp
|
||||
df["EF_i"] = EF
|
||||
df["EP_i"] = EP
|
||||
|
||||
EinflussPunktlage = df[["Beobachtung", "r_i", "GF_i", "EF_i", "EP_i", "δ0", "alpha", "beta"]]
|
||||
return EinflussPunktlage
|
||||
|
||||
|
||||
def aeussere_zuverlaessigkeit_EF(Qxx, A, P, s0_apost, GRZW, labels):
|
||||
Qxx = np.asarray(Qxx, float)
|
||||
A = np.asarray(A, float)
|
||||
P = np.asarray(P, float)
|
||||
GRZW = np.asarray(GRZW, float).reshape(-1)
|
||||
labels = list(labels)
|
||||
|
||||
B = Qxx @ (A.T @ P)
|
||||
|
||||
EF = np.empty_like(GRZW, dtype=float)
|
||||
|
||||
# Für jede Beobachtung i: ∇x_i = B[:,i] * GRZW_i
|
||||
# EF_i^2 = (GRZW_i^2 * B_i^T Qxx^{-1} B_i) / s0^2
|
||||
for i in range(len(GRZW)):
|
||||
bi = B[:, i] # (u,)
|
||||
y = np.linalg.solve(Qxx, bi) # = Qxx^{-1} bi
|
||||
EF2 = (GRZW[i] ** 2) * float(bi @ y) / (float(s0_apost) ** 2)
|
||||
EF[i] = np.sqrt(EF2)
|
||||
|
||||
df = pd.DataFrame({
|
||||
"Beobachtung": labels,
|
||||
"GRZW_i": GRZW,
|
||||
"EF_i": EF
|
||||
})
|
||||
return df
|
||||
Reference in New Issue
Block a user