This commit is contained in:
2026-01-22 08:51:18 +01:00
parent 7a170f5ead
commit 7c1b335b1c
5 changed files with 49478 additions and 49398 deletions

File diff suppressed because it is too large Load Diff

View File

@@ -15,37 +15,43 @@ class Genauigkeitsmaße:
return float(s0apost)
@staticmethod
def helmert_punktfehler(Qxx, s0_apost, unbekannten_liste, dim=3):
diagQ = np.diag(Qxx)
daten = []
namen_str = [str(sym) for sym in unbekannten_liste]
n_punkte = len(unbekannten_liste) // 3
punkt_ids = []
for n in namen_str:
if n.upper().startswith('X'):
punkt_ids.append(n[1:])
for i in range(n_punkte):
sym_x = str(unbekannten_liste[3 * i]) # z.B. "X10009"
punkt = sym_x[1:] # -> "10009"
for pid in punkt_ids:
try:
idx_x = next(i for i, n in enumerate(namen_str) if n.upper() == f"X{pid}".upper())
idx_y = next(i for i, n in enumerate(namen_str) if n.upper() == f"Y{pid}".upper())
qx = diagQ[3 * i]
qy = diagQ[3 * i + 1]
qz = diagQ[3 * i + 2]
qx = diagQ[idx_x]
qy = diagQ[idx_y]
qz = 0.0
if dim == 3:
try:
idx_z = next(i for i, n in enumerate(namen_str) if n.upper() == f"Z{pid}".upper())
qz = diagQ[idx_z]
except StopIteration:
qz = 0.0
sx = s0_apost * np.sqrt(qx)
sy = s0_apost * np.sqrt(qy)
sz = s0_apost * np.sqrt(qz)
sz = s0_apost * np.sqrt(qz) if dim == 3 else 0
if dim == 2:
sP = s0_apost * np.sqrt(qx + qy)
else:
sP = s0_apost * np.sqrt(qx + qy + qz)
daten.append([
punkt,
float(sx),
float(sy),
float(sz),
float(sP)
])
daten.append([pid, float(sx), float(sy), float(sz), float(sP)])
except:
continue
helmert_punktfehler = pd.DataFrame(daten, columns=["Punkt", "σx", "σy", "σz", f"σP_{dim}D"])
return helmert_punktfehler
@@ -257,3 +263,172 @@ def plot_netz_komplett_final(x_vektor, unbekannten_labels, beobachtungs_labels,
bgcolor="white", bordercolor="black", borderwidth=1)
fig.show(config={'scrollZoom': True})
def plot_netz_final_mit_df_ellipsen(x_vektor, unbekannten_labels, beobachtungs_labels, df_ellipsen, v_faktor=1000):
# 1. Punkte extrahieren
coords = {}
# Wir nehmen an, dass die Reihenfolge im x_vektor X, Y, Z pro Punkt ist
punkt_ids = sorted(set(str(l)[1:] for l in unbekannten_labels if str(l).startswith(('X', 'Y', 'Z'))))
for pid in punkt_ids:
try:
ix = next(i for i, s in enumerate(unbekannten_labels) if str(s) == f"X{pid}")
iy = next(i for i, s in enumerate(unbekannten_labels) if str(s) == f"Y{pid}")
coords[pid] = (float(x_vektor[ix]), float(x_vektor[iy]))
except:
continue
fig = go.Figure()
# 2. Beobachtungslinien (Gruppiert)
beob_typen = {
'GNSS-Basislinien': {'pattern': 'gnss', 'color': 'rgba(255, 100, 0, 0.4)'},
'Nivellement': {'pattern': 'niv', 'color': 'rgba(0, 200, 100, 0.4)'},
'Tachymeter': {'pattern': '', 'color': 'rgba(100, 100, 100, 0.3)'}
}
for typ, info in beob_typen.items():
x_l, y_l = [], []
for bl in beobachtungs_labels:
bl_str = str(bl).lower()
# Einfache Logik zur Typtrennung
if (info['pattern'] in bl_str and info['pattern'] != '') or \
(info['pattern'] == '' and 'gnss' not in bl_str and 'niv' not in bl_str):
pts = [pid for pid in coords if f"_{pid}" in str(bl) or str(bl).startswith(f"{pid}_")]
if len(pts) >= 2:
x_l.extend([coords[pts[0]][0], coords[pts[1]][0], None])
y_l.extend([coords[pts[0]][1], coords[pts[1]][1], None])
if x_l:
fig.add_trace(go.Scatter(x=x_l, y=y_l, mode='lines', name=typ, line=dict(color=info['color'], width=1)))
# 3. Ellipsen aus dem DataFrame zeichnen
for _, row in df_ellipsen.iterrows():
pid = str(row['Punkt'])
if pid in coords:
x0, y0 = coords[pid]
# Werte aus DF (mit v_faktor skalieren)
a = row['a_K'] * v_faktor
b = row['b_K'] * v_faktor
theta_gon = row['θ [gon]']
# Umrechnung: gon -> rad für die Rotation
# Da im Plot X horizontal und Y vertikal ist, entspricht theta_gon dem Winkel zur X-Achse
theta_rad = theta_gon * (np.pi / 200.0)
# Ellipsen berechnen
t = np.linspace(0, 2 * np.pi, 50)
e_x = a * np.cos(t)
e_y = b * np.sin(t)
# Ausrichtung der Ellipsen
R = np.array([[np.cos(theta_rad), -np.sin(theta_rad)],
[np.sin(theta_rad), np.cos(theta_rad)]])
rot = np.dot(R, np.array([e_x, e_y]))
fig.add_trace(go.Scatter(
x=rot[0, :] + x0, y=rot[1, :] + y0,
mode='lines', line=dict(color='red', width=1.5),
name='Konfidenzellipsen',
legendgroup='Ellipsen',
showlegend=(pid == df_ellipsen.iloc[0]['Punkt']),
hoverinfo='text',
text=f"Punkt {pid}<br>a_K: {row['a_K']:.4f}m<br>b_K: {row['b_K']:.4f}m"
))
# Punkte plotten
df_pts = pd.DataFrame([(pid, c[0], c[1]) for pid, c in coords.items()], columns=['ID', 'X', 'Y'])
fig.add_trace(go.Scatter(
x=df_pts['X'], y=df_pts['Y'], mode='markers+text',
text=df_pts['ID'], textposition="top center",
marker=dict(size=8, color='black'), name="Netzpunkte"))
# Layout
fig.update_layout(
title=f"Netzplot (Ellipsen {v_faktor}x überhöht)",
xaxis=dict(title="X [m]", tickformat="f", separatethousands=True, scaleanchor="y", scaleratio=1,
showgrid=True, gridcolor='lightgrey'),
yaxis=dict(title="Y [m]", tickformat="f", separatethousands=True, showgrid=True, gridcolor='lightgrey'),
width=1100, height=900,
plot_bgcolor='white')
# Maßstabsangabe
fig.add_annotation(
text=f"<b>Skalierung:</b><br>Ellipsengröße im Plot = {v_faktor} × Realität",
align='left', showarrow=False, xref='paper', yref='paper', x=0.02, y=0.02,
bgcolor="rgba(255,255,255,0.8)", bordercolor="black", borderwidth=1)
fig.show(config={'scrollZoom': True})
import plotly.graph_objects as go
import numpy as np
def plot_netz_3D(x_vektor, unbekannten_labels, beobachtungs_labels, df_ellipsen, v_faktor=1000):
"""
Erzeugt einen interaktiven 3D-Plot des Netzes.
- v_faktor: Vergrößerung der Genauigkeits-Achsen (z.B. 1000 für mm -> m)
"""
# 1. Punkte extrahieren
pts = {}
punkt_ids = sorted(set(str(l)[1:] for l in unbekannten_labels if str(l).startswith(('X', 'Y', 'Z'))))
for pid in punkt_ids:
try:
ix = next(i for i, s in enumerate(unbekannten_labels) if str(s) == f"X{pid}")
iy = next(i for i, s in enumerate(unbekannten_labels) if str(s) == f"Y{pid}")
iz = next(i for i, s in enumerate(unbekannten_labels) if str(s) == f"Z{pid}")
pts[pid] = (float(x_vektor[ix]), float(x_vektor[iy]), float(x_vektor[iz]))
except:
continue
fig = go.Figure()
# 2. Beobachtungen (Linien im Raum)
# Wir zeichnen hier einfach alle Verbindungen
x_line, y_line, z_line = [], [], []
for bl in beobachtungs_labels:
p_in_l = [pid for pid in pts if f"_{pid}" in str(bl) or str(bl).startswith(f"{pid}_")]
if len(p_in_l) >= 2:
p1, p2 = pts[p_in_l[0]], pts[p_in_l[1]]
x_line.extend([p1[0], p2[0], None])
y_line.extend([p1[1], p2[1], None])
z_line.extend([p1[2], p2[2], None])
fig.add_trace(go.Scatter3d(
x=x_line, y=y_line, z=z_line,
mode='lines', line=dict(color='gray', width=2),
name='Beobachtungen'
))
# 3. Punkte & "Fehler-Kreuze" (als Ersatz für Ellipsoide)
# Ein echtes 3D-Ellipsoid ist grafisch schwer, daher zeichnen wir 3 Achsen
for pid, coord in pts.items():
# Hier könnten wir die echten Halbachsen aus der 3D-Eigenwertanalyse nutzen
# Für den Anfang plotten wir die Standardabweichungen sX, sY, sZ als Kreuz
fig.add_trace(go.Scatter3d(
x=[coord[0]], y=[coord[1]], z=[coord[2]],
mode='markers+text', text=[pid],
marker=dict(size=4, color='black'), name=f'Punkt {pid}'
))
# 4. Layout
fig.update_layout(
scene=dict(
xaxis_title='X [m]',
yaxis_title='Y [m]',
zaxis_title='Z [m]',
aspectmode='data' # WICHTIG: Verhältnisse 1:1:1 bewahren
),
width=1000, height=800,
title="Geozentrisches Netz in 3D"
)
fig.show()
# Aufruf

View File

@@ -18,7 +18,7 @@ def ausgleichung_global(A, dl, Q_ext):
N = A.T @ P @ A
n = A.T @ P @ dl
# 3) Zuschlagsvektor dx und Unbekanntenvektor x
# 3) Zuschlagsvektor dx
dx = np.linalg.solve(N, n)
# 4) Residuenvektor v
@@ -47,20 +47,10 @@ def ausgleichung_global(A, dl, Q_ext):
return dict_ausgleichung, dx
def ausgleichung_lokal(
A,
dl,
Q_ll,
x0,
liste_punktnummern,
auswahl,
mit_massstab: bool = True,
):
def ausgleichung_lokal(A, dl, Q_ll):
A = np.asarray(A, dtype=float)
dl = np.asarray(dl, dtype=float).reshape(-1, 1)
Q_ll = np.asarray(Q_ll, dtype=float)
x0 = np.asarray(x0, dtype=float).reshape(-1, 1)
# 1) Gewichtsmatrix
P = np.linalg.inv(Q_ll)
@@ -69,73 +59,37 @@ def ausgleichung_lokal(
N = A.T @ P @ A
n = A.T @ P @ dl
# 3) Datum: G, E, Gi
# -> Datumsfestlegung ist sympy-basiert, daher nur dafür kurz Sympy verwenden
x0_sp = sp.Matrix(x0)
# 3) Datumsfestlegung
G = Datumsfestlegung.raenderungsmatrix_G(x0_sp, liste_punktnummern, mit_massstab=mit_massstab)
aktive = Datumsfestlegung.datumskomponenten(auswahl, liste_punktnummern)
E = Datumsfestlegung.auswahlmatrix_E(u=A.shape[1], aktive_unbekannte_indices=aktive)
Gi_sp = E * G
Gi = np.asarray(Gi_sp, dtype=float)
Gi = np.asarray(Gi_sp, dtype=float) # zurück nach numpy
# 4) gerändertes System lösen:
# [N Gi] [dx] = [n]
# [GiT 0] [k ] [0]
u = N.shape[0]
d = Gi.shape[1]
K = np.block([
[N, Gi],
[Gi.T, np.zeros((d, d))]
])
rhs = np.vstack([n, np.zeros((d, 1))])
sol = np.linalg.solve(K, rhs)
dx = sol[:u, :]
# 3) Zuschlagsvektor dx
dx = np.linalg.solve(N, n)
# 5) Residuen
v = dl - A @ dx
# 6) Qxx (innere Lösung)
N_inv = np.linalg.inv(N)
N_inv_G = N_inv @ Gi
S = Gi.T @ N_inv_G
print("rank(Gi) =", np.linalg.matrix_rank(Gi))
print("Gi shape =", Gi.shape)
print("rank(S) =", np.linalg.matrix_rank(S))
print("S shape =", S.shape)
S_inv = np.linalg.inv(S)
Q_xx = N_inv - N_inv_G @ S_inv @ N_inv_G.T
# 5) Kofaktormatrix der Unbekannten Q_xx
Q_xx = StochastischesModell.berechne_Q_xx(N)
# 7) Q_lhat_lhat, Q_vv
Q_lhat_lhat = A @ Q_xx @ A.T
Q_vv = np.linalg.inv(P) - Q_lhat_lhat
# 6) Kofaktormatrix der Beobachtungen Q_ll_dach
Q_ll_dach = StochastischesModell.berechne_Q_ll_dach(A, Q_xx)
# 8) Redundanz
R = Q_vv @ P
r_vec = np.diag(R).reshape(-1, 1)
n_beob = A.shape[0]
u = A.shape[1]
d = Gi.shape[1]
r_gesamt = n_beob - u + d
# 7) Kofaktormatrix der Verbesserungen Q_vv
Q_vv = StochastischesModell.berechne_Qvv(Q_ll, Q_ll_dach)
# 9) sigma0
vv = float(v.T @ P @ v)
sigma0_apost = float(np.sqrt(vv / r_gesamt))
return {
# 8) Ausgabe
dict_ausgleichung = {
"dx": dx,
"v": v,
"P": P,
"N": N,
"Q_xx": Q_xx,
"Q_lhat_lhat": Q_lhat_lhat,
"Q_ll_dach": Q_ll_dach,
"Q_vv": Q_vv,
"R": R,
"r": r_vec,
"r_gesamt": r_gesamt,
"sigma0_apost": sigma0_apost,
"G": np.asarray(G, dtype=float),
"Gi": Gi,
}, dx
"Q_ll": Q_ll,
}
return dict_ausgleichung, dx

28
Proben.py Normal file
View File

@@ -0,0 +1,28 @@
import numpy as np
# d
def atpv_probe(A, P, v, tol=1e-7):
A = np.asarray(A, float)
P = np.asarray(P, float)
v = np.asarray(v, float).reshape(-1, 1)
ATPV = A.T @ P @ v
if np.allclose(ATPV, 0, atol=tol):
print("ATPv-Probe erfolgreich")
else:
print("ATPv-Probe nicht erfolgreich. Fehler bei der Lösung des Normalgleichungssystems")
def hauptprobe(A, x, l, v, tol=1e-7):
A = np.asarray(A, float)
x = np.asarray(x, float).reshape(-1, 1)
l = np.asarray(l, float).reshape(-1, 1)
v = np.asarray(v, float).reshape(-1, 1)
v_test = A @ x - l
if np.allclose(v, v_test, atol=tol):
print("Hauptprobe erfolgreich")
else:
diff = v - v_test
print("Hauptprobe nicht erfolgreich. Abweichung zu v: ", diff)

View File

@@ -1,6 +1,361 @@
i = 5
import csv
import xml.etree.ElementTree as ET
from decimal import Decimal, getcontext, ROUND_HALF_UP
if i % 6 != 0:
print("nein")
else:
print("ja")
# ========= Einstellungen =========
JXL_IN = r"C:\Users\fabia\Desktop\Masterprojekt_V3\Daten\campusnetz_bereinigt_plus_nachmessung.jxl"
CSV_IN = r"C:\Users\fabia\Desktop\Masterprojekt_V3\Daten\campsnetz_beobachtungen_plus_nachmessungen.csv"
CSV_OUT = r"C:\Users\fabia\Desktop\Masterprojekt_V3\Daten\campsnetz_beobachtungen_plus_nachmessungen_korrigiert.csv"
getcontext().prec = 70
# ========= Hilfsfunktionen =========
def count_decimals(s: str, sep: str) -> int:
if s is None:
return 0
s = s.strip()
if s == "":
return 0
if ":ZH:" in s:
s = s.split(":ZH:", 1)[0].strip()
if sep in s:
return len(s.split(sep, 1)[1])
return 0
def fmt_decimal_fixed(x: Decimal, decimals: int, sep: str) -> str:
q = Decimal("1") if decimals == 0 else Decimal("1." + ("0" * decimals))
y = x.quantize(q, rounding=ROUND_HALF_UP)
txt = format(y, "f")
if sep != ".":
txt = txt.replace(".", sep)
if decimals == 0:
txt = txt.split(sep)[0]
return txt
def parse_decimal_csv(s: str) -> Decimal:
"""
CSV-Zahlen mit Komma, evtl. mit ":ZH:..." im letzten Feld.
"""
s = (s or "").strip()
if ":ZH:" in s:
s = s.split(":ZH:", 1)[0].strip()
s = s.replace(",", ".")
return Decimal(s)
def parse_decimal_comma(s: str) -> Decimal:
"""
Komma-String nach Decimal.
"""
return Decimal((s or "").strip().replace(",", "."))
def deg_to_gon_str(deg_str: str) -> str:
"""
JXL: Winkel in Grad (Dezimalpunkt).
gon = deg * (10/9)
Ausgabe mit exakt so vielen Nachkommastellen wie im JXL-Gradwert enthalten.
Dezimaltrennzeichen: Komma.
"""
deg_str = (deg_str or "").strip()
d = count_decimals(deg_str, ".")
deg = Decimal(deg_str)
gon = deg * (Decimal(10) / Decimal(9))
return fmt_decimal_fixed(gon, d, ",")
def meter_str_from_jxl(m_str: str) -> str:
"""
JXL: Distanz in Meter (Dezimalpunkt).
Ausgabe mit exakt so vielen Nachkommastellen wie in der JXL enthalten.
Dezimaltrennzeichen: Komma.
"""
m_str = (m_str or "").strip()
d = count_decimals(m_str, ".")
return fmt_decimal_fixed(Decimal(m_str), d, ",")
def is_obs_line(row: list[str]) -> bool:
"""
Beobachtungszeile: Zielpunkt nicht leer, Hz/Z/SD numerisch parsebar.
Zielpunkt darf alphanumerisch sein (FH3 etc.).
"""
if len(row) < 4:
return False
if row[0].strip() == "" or row[1].strip() == "" or row[2].strip() == "" or row[3].strip() == "":
return False
try:
_ = parse_decimal_csv(row[1])
_ = parse_decimal_csv(row[2])
_ = parse_decimal_csv(row[3])
return True
except Exception:
return False
def is_station_candidate(row: list[str]) -> bool:
"""
Kandidat für Standpunkt: erste Spalte nicht leer, Messspalten leer.
Ob es wirklich ein Standpunkt ist, entscheiden wir später über StationName-Menge.
"""
if len(row) < 4:
return False
return (
row[0].strip() != ""
and row[1].strip() == ""
and row[2].strip() == ""
and row[3].strip() == ""
)
def csv_is_rounding_of_jxl(csv_str: str, jxl_full_str: str) -> bool:
"""
Prüft: CSV ist gerundete Darstellung des JXL-Wertes.
Kriterium:
- CSV hat weniger Nachkommastellen als JXL
- und: JXL auf CSV-Dezimalstellen gerundet == CSV-Wert (numerisch)
"""
dc = count_decimals(csv_str, ",")
dj = count_decimals(jxl_full_str, ",")
if dc >= dj:
return False
try:
csv_val = parse_decimal_csv(csv_str)
jxl_val = parse_decimal_comma(jxl_full_str)
q = Decimal("1") if dc == 0 else Decimal("1." + ("0" * dc))
jxl_rounded = jxl_val.quantize(q, rounding=ROUND_HALF_UP)
csv_q = csv_val.quantize(q, rounding=ROUND_HALF_UP)
return jxl_rounded == csv_q
except Exception:
return False
# ========= JXL einlesen =========
tree = ET.parse(JXL_IN)
root = tree.getroot()
# StationRecords: (StationName, StationID, IH)
station_records = []
for sr in root.iter("StationRecord"):
sname = (sr.findtext("StationName") or "").strip()
sid = (sr.attrib.get("ID") or "").strip()
ih = (sr.findtext("TheodoliteHeight") or "").strip()
if sname != "" and sid != "":
station_records.append((sname, sid, ih))
station_names_set = {sname for sname, _, _ in station_records}
# pro StationName ggf. mehrere Aufbauten -> "nächsten unbenutzten" nehmen
stationname_to_records = {}
for sname, sid, ih in station_records:
stationname_to_records.setdefault(sname, []).append((sid, ih))
stationname_usecount = {k: 0 for k in stationname_to_records.keys()}
# TargetHeight je TargetRecord-ID
target_height_by_id = {}
for tr in root.iter("TargetRecord"):
tid = (tr.attrib.get("ID") or "").strip()
zh = (tr.findtext("TargetHeight") or "").strip()
if tid != "":
target_height_by_id[tid] = zh
# Pro StationID: Sequenz der PointRecords
station_seq = {sid: [] for _, sid, _ in station_records}
for pr in root.iter("PointRecord"):
stid = (pr.findtext("StationID") or "").strip()
if stid == "" or stid not in station_seq:
continue
circle = pr.find("Circle")
if circle is None:
continue
target_name = (pr.findtext("Name") or "").strip()
target_id = (pr.findtext("TargetID") or "").strip()
hz_deg = (circle.findtext("HorizontalCircle") or "").strip()
z_deg = (circle.findtext("VerticalCircle") or "").strip()
sd_m = (circle.findtext("EDMDistance") or "").strip()
if target_name == "" or hz_deg == "" or z_deg == "" or sd_m == "":
continue
station_seq[stid].append({
"target": target_name,
"hz_gon": deg_to_gon_str(hz_deg),
"z_gon": deg_to_gon_str(z_deg),
"sd_m": meter_str_from_jxl(sd_m),
"zh": target_height_by_id.get(target_id, ""),
})
# ========= Matching-Funktion =========
def pick_jxl_entry_for_obs(seq, start_ptr, zp, hz_csv, z_csv, sd_csv, search_window=200):
"""
Standard: nimmt seq[start_ptr]
Wenn target nicht passt: sucht im Fenster nach passendem zp.
Bei Mehrfachtreffern wird bevorzugt, wo gerundete Werte passen.
"""
if start_ptr >= len(seq):
return None, start_ptr
first = seq[start_ptr]
if first["target"] == zp:
return first, start_ptr + 1
end = min(len(seq), start_ptr + search_window)
candidates = []
for i in range(start_ptr, end):
if seq[i]["target"] == zp:
candidates.append((i, seq[i]))
if not candidates:
return first, start_ptr + 1
if len(candidates) == 1:
i, entry = candidates[0]
return entry, i + 1
good = []
for i, entry in candidates:
ok_hz = csv_is_rounding_of_jxl(hz_csv, entry["hz_gon"])
ok_z = csv_is_rounding_of_jxl(z_csv, entry["z_gon"])
ok_sd = csv_is_rounding_of_jxl(sd_csv, entry["sd_m"])
score = int(ok_hz) + int(ok_z) + int(ok_sd)
good.append((score, i, entry))
good.sort(key=lambda t: (-t[0], t[1]))
_, i_best, entry_best = good[0]
return entry_best, i_best + 1
# ========= CSV verarbeiten =========
repl_counts = {"Hz": 0, "Z": 0, "SD": 0}
current_station_id = None
current_station_ptr = 0
line_no = 0
fehlende_IH = [] # (zeilennummer, standpunkt)
fehlende_ZH = [] # (zeilennummer, standpunkt, zielpunkt)
fehlender_StationRecord = [] # (zeilennummer, standpunkt_text)
current_station_name = None
with open(CSV_IN, newline="", encoding="utf-8") as fin, open(CSV_OUT, "w", newline="", encoding="utf-8") as fout:
reader = csv.reader(fin, delimiter=";")
writer = csv.writer(fout, delimiter=";", lineterminator="\n")
for row in reader:
line_no += 1
if len(row) < 4:
row = row + [""] * (4 - len(row))
# ---- Standpunkt-Kandidat? ----
if is_station_candidate(row):
sp = row[0].strip()
# Nur als Standpunkt behandeln, wenn er wirklich in der JXL als StationName existiert:
if sp in station_names_set:
use = stationname_usecount.get(sp, 0)
recs = stationname_to_records[sp]
if use >= len(recs):
raise RuntimeError(f"Standpunkt {sp} kommt in CSV öfter vor als in der JXL (StationRecords).")
sid, ih = recs[use]
stationname_usecount[sp] = use + 1
current_station_name = sp
current_station_id = sid
current_station_ptr = 0
# fehlende IH loggen
if ih is None or str(ih).strip() == "":
fehlende_IH.append((line_no, sp))
writer.writerow([sp, f"IH:{ih}", "", "", ""])
continue
# NICHT in JXL: wenn es wie ein Standpunkt aussieht -> loggen
if sp.isdigit():
fehlender_StationRecord.append((line_no, sp))
writer.writerow(row)
continue
# ---- Beobachtung? ----
if is_obs_line(row) and current_station_id is not None:
zp = row[0].strip()
hz_csv = row[1].strip()
z_csv = row[2].strip()
sd_csv = row[3].strip()
seq = station_seq.get(current_station_id, [])
jxl_entry, new_ptr = pick_jxl_entry_for_obs(seq, current_station_ptr, zp, hz_csv, z_csv, sd_csv)
if jxl_entry is None:
writer.writerow(row)
continue
current_station_ptr = new_ptr
hz_out = hz_csv
z_out = z_csv
sd_out = sd_csv
if csv_is_rounding_of_jxl(hz_csv, jxl_entry["hz_gon"]):
hz_out = jxl_entry["hz_gon"]
repl_counts["Hz"] += 1
if csv_is_rounding_of_jxl(z_csv, jxl_entry["z_gon"]):
z_out = jxl_entry["z_gon"]
repl_counts["Z"] += 1
if csv_is_rounding_of_jxl(sd_csv, jxl_entry["sd_m"]):
sd_out = jxl_entry["sd_m"]
repl_counts["SD"] += 1
# fehlende ZH loggen
zh_val = jxl_entry.get("zh", "")
if zh_val is None or str(zh_val).strip() == "":
fehlende_ZH.append((line_no, current_station_name, zp))
last_col = f"{sd_out}:ZH:{zh_val}" if str(zh_val).strip() != "" else sd_out
writer.writerow([zp, hz_out, z_out, last_col])
continue
# ---- alles andere unverändert ----
writer.writerow(row)
print("Fertig.")
print("Ausgabe:", CSV_OUT)
print("Ersetzungen (Rundung -> JXL volle Nachkommastellen):", repl_counts)
print("\n--- Fehlende IH ---")
print("Anzahl:", len(fehlende_IH))
for z, sp in fehlende_IH[:50]:
print(f"Zeile {z}: Standpunkt {sp} (IH leer in JXL)")
if len(fehlende_IH) > 50:
print("... (weitere gekürzt)")
print("\n--- Fehlende ZH ---")
print("Anzahl:", len(fehlende_ZH))
for z, sp, zp in fehlende_ZH[:50]:
print(f"Zeile {z}: Standpunkt {sp}, Ziel {zp} (ZH nicht ermittelt)")
if len(fehlende_ZH) > 50:
print("... (weitere gekürzt)")
print("\n--- Standpunkt in CSV, aber kein StationRecord in JXL ---")
print("Anzahl:", len(fehlender_StationRecord))
for z, sp in fehlender_StationRecord[:50]:
print(f"Zeile {z}: Standpunkt {sp} (nicht in JXL als StationName gefunden)")
if len(fehlender_StationRecord) > 50:
print("... (weitere gekürzt)")