Push
This commit is contained in:
@@ -15,37 +15,43 @@ class Genauigkeitsmaße:
|
||||
return float(s0apost)
|
||||
|
||||
|
||||
|
||||
@staticmethod
|
||||
def helmert_punktfehler(Qxx, s0_apost, unbekannten_liste, dim=3):
|
||||
diagQ = np.diag(Qxx)
|
||||
daten = []
|
||||
namen_str = [str(sym) for sym in unbekannten_liste]
|
||||
|
||||
n_punkte = len(unbekannten_liste) // 3
|
||||
punkt_ids = []
|
||||
for n in namen_str:
|
||||
if n.upper().startswith('X'):
|
||||
punkt_ids.append(n[1:])
|
||||
|
||||
for i in range(n_punkte):
|
||||
sym_x = str(unbekannten_liste[3 * i]) # z.B. "X10009"
|
||||
punkt = sym_x[1:] # -> "10009"
|
||||
for pid in punkt_ids:
|
||||
try:
|
||||
idx_x = next(i for i, n in enumerate(namen_str) if n.upper() == f"X{pid}".upper())
|
||||
idx_y = next(i for i, n in enumerate(namen_str) if n.upper() == f"Y{pid}".upper())
|
||||
|
||||
qx = diagQ[3 * i]
|
||||
qy = diagQ[3 * i + 1]
|
||||
qz = diagQ[3 * i + 2]
|
||||
qx = diagQ[idx_x]
|
||||
qy = diagQ[idx_y]
|
||||
qz = 0.0
|
||||
|
||||
sx = s0_apost * np.sqrt(qx)
|
||||
sy = s0_apost * np.sqrt(qy)
|
||||
sz = s0_apost * np.sqrt(qz)
|
||||
if dim == 3:
|
||||
try:
|
||||
idx_z = next(i for i, n in enumerate(namen_str) if n.upper() == f"Z{pid}".upper())
|
||||
qz = diagQ[idx_z]
|
||||
except StopIteration:
|
||||
qz = 0.0
|
||||
|
||||
sx = s0_apost * np.sqrt(qx)
|
||||
sy = s0_apost * np.sqrt(qy)
|
||||
sz = s0_apost * np.sqrt(qz) if dim == 3 else 0
|
||||
|
||||
if dim == 2:
|
||||
sP = s0_apost * np.sqrt(qx + qy)
|
||||
else:
|
||||
sP = s0_apost * np.sqrt(qx + qy + qz)
|
||||
|
||||
daten.append([
|
||||
punkt,
|
||||
float(sx),
|
||||
float(sy),
|
||||
float(sz),
|
||||
float(sP)
|
||||
])
|
||||
daten.append([pid, float(sx), float(sy), float(sz), float(sP)])
|
||||
except:
|
||||
continue
|
||||
|
||||
helmert_punktfehler = pd.DataFrame(daten, columns=["Punkt", "σx", "σy", "σz", f"σP_{dim}D"])
|
||||
return helmert_punktfehler
|
||||
|
||||
@@ -256,4 +262,173 @@ def plot_netz_komplett_final(x_vektor, unbekannten_labels, beobachtungs_labels,
|
||||
align='left', showarrow=False, xref='paper', yref='paper', x=0.02, y=0.05,
|
||||
bgcolor="white", bordercolor="black", borderwidth=1)
|
||||
|
||||
fig.show(config={'scrollZoom': True})
|
||||
fig.show(config={'scrollZoom': True})
|
||||
|
||||
|
||||
|
||||
def plot_netz_final_mit_df_ellipsen(x_vektor, unbekannten_labels, beobachtungs_labels, df_ellipsen, v_faktor=1000):
|
||||
# 1. Punkte extrahieren
|
||||
coords = {}
|
||||
# Wir nehmen an, dass die Reihenfolge im x_vektor X, Y, Z pro Punkt ist
|
||||
punkt_ids = sorted(set(str(l)[1:] for l in unbekannten_labels if str(l).startswith(('X', 'Y', 'Z'))))
|
||||
|
||||
for pid in punkt_ids:
|
||||
try:
|
||||
ix = next(i for i, s in enumerate(unbekannten_labels) if str(s) == f"X{pid}")
|
||||
iy = next(i for i, s in enumerate(unbekannten_labels) if str(s) == f"Y{pid}")
|
||||
coords[pid] = (float(x_vektor[ix]), float(x_vektor[iy]))
|
||||
except:
|
||||
continue
|
||||
|
||||
fig = go.Figure()
|
||||
|
||||
# 2. Beobachtungslinien (Gruppiert)
|
||||
beob_typen = {
|
||||
'GNSS-Basislinien': {'pattern': 'gnss', 'color': 'rgba(255, 100, 0, 0.4)'},
|
||||
'Nivellement': {'pattern': 'niv', 'color': 'rgba(0, 200, 100, 0.4)'},
|
||||
'Tachymeter': {'pattern': '', 'color': 'rgba(100, 100, 100, 0.3)'}
|
||||
}
|
||||
|
||||
for typ, info in beob_typen.items():
|
||||
x_l, y_l = [], []
|
||||
for bl in beobachtungs_labels:
|
||||
bl_str = str(bl).lower()
|
||||
# Einfache Logik zur Typtrennung
|
||||
if (info['pattern'] in bl_str and info['pattern'] != '') or \
|
||||
(info['pattern'] == '' and 'gnss' not in bl_str and 'niv' not in bl_str):
|
||||
pts = [pid for pid in coords if f"_{pid}" in str(bl) or str(bl).startswith(f"{pid}_")]
|
||||
if len(pts) >= 2:
|
||||
x_l.extend([coords[pts[0]][0], coords[pts[1]][0], None])
|
||||
y_l.extend([coords[pts[0]][1], coords[pts[1]][1], None])
|
||||
|
||||
if x_l:
|
||||
fig.add_trace(go.Scatter(x=x_l, y=y_l, mode='lines', name=typ, line=dict(color=info['color'], width=1)))
|
||||
|
||||
# 3. Ellipsen aus dem DataFrame zeichnen
|
||||
for _, row in df_ellipsen.iterrows():
|
||||
pid = str(row['Punkt'])
|
||||
if pid in coords:
|
||||
x0, y0 = coords[pid]
|
||||
|
||||
# Werte aus DF (mit v_faktor skalieren)
|
||||
a = row['a_K'] * v_faktor
|
||||
b = row['b_K'] * v_faktor
|
||||
theta_gon = row['θ [gon]']
|
||||
|
||||
# Umrechnung: gon -> rad für die Rotation
|
||||
# Da im Plot X horizontal und Y vertikal ist, entspricht theta_gon dem Winkel zur X-Achse
|
||||
theta_rad = theta_gon * (np.pi / 200.0)
|
||||
|
||||
# Ellipsen berechnen
|
||||
t = np.linspace(0, 2 * np.pi, 50)
|
||||
e_x = a * np.cos(t)
|
||||
e_y = b * np.sin(t)
|
||||
|
||||
# Ausrichtung der Ellipsen
|
||||
R = np.array([[np.cos(theta_rad), -np.sin(theta_rad)],
|
||||
[np.sin(theta_rad), np.cos(theta_rad)]])
|
||||
|
||||
rot = np.dot(R, np.array([e_x, e_y]))
|
||||
|
||||
fig.add_trace(go.Scatter(
|
||||
x=rot[0, :] + x0, y=rot[1, :] + y0,
|
||||
mode='lines', line=dict(color='red', width=1.5),
|
||||
name='Konfidenzellipsen',
|
||||
legendgroup='Ellipsen',
|
||||
showlegend=(pid == df_ellipsen.iloc[0]['Punkt']),
|
||||
hoverinfo='text',
|
||||
text=f"Punkt {pid}<br>a_K: {row['a_K']:.4f}m<br>b_K: {row['b_K']:.4f}m"
|
||||
))
|
||||
|
||||
# Punkte plotten
|
||||
df_pts = pd.DataFrame([(pid, c[0], c[1]) for pid, c in coords.items()], columns=['ID', 'X', 'Y'])
|
||||
fig.add_trace(go.Scatter(
|
||||
x=df_pts['X'], y=df_pts['Y'], mode='markers+text',
|
||||
text=df_pts['ID'], textposition="top center",
|
||||
marker=dict(size=8, color='black'), name="Netzpunkte"))
|
||||
|
||||
# Layout
|
||||
fig.update_layout(
|
||||
title=f"Netzplot (Ellipsen {v_faktor}x überhöht)",
|
||||
xaxis=dict(title="X [m]", tickformat="f", separatethousands=True, scaleanchor="y", scaleratio=1,
|
||||
showgrid=True, gridcolor='lightgrey'),
|
||||
yaxis=dict(title="Y [m]", tickformat="f", separatethousands=True, showgrid=True, gridcolor='lightgrey'),
|
||||
width=1100, height=900,
|
||||
plot_bgcolor='white')
|
||||
|
||||
# Maßstabsangabe
|
||||
fig.add_annotation(
|
||||
text=f"<b>Skalierung:</b><br>Ellipsengröße im Plot = {v_faktor} × Realität",
|
||||
align='left', showarrow=False, xref='paper', yref='paper', x=0.02, y=0.02,
|
||||
bgcolor="rgba(255,255,255,0.8)", bordercolor="black", borderwidth=1)
|
||||
|
||||
fig.show(config={'scrollZoom': True})
|
||||
|
||||
import plotly.graph_objects as go
|
||||
import numpy as np
|
||||
|
||||
|
||||
|
||||
def plot_netz_3D(x_vektor, unbekannten_labels, beobachtungs_labels, df_ellipsen, v_faktor=1000):
|
||||
"""
|
||||
Erzeugt einen interaktiven 3D-Plot des Netzes.
|
||||
- v_faktor: Vergrößerung der Genauigkeits-Achsen (z.B. 1000 für mm -> m)
|
||||
"""
|
||||
# 1. Punkte extrahieren
|
||||
pts = {}
|
||||
punkt_ids = sorted(set(str(l)[1:] for l in unbekannten_labels if str(l).startswith(('X', 'Y', 'Z'))))
|
||||
|
||||
for pid in punkt_ids:
|
||||
try:
|
||||
ix = next(i for i, s in enumerate(unbekannten_labels) if str(s) == f"X{pid}")
|
||||
iy = next(i for i, s in enumerate(unbekannten_labels) if str(s) == f"Y{pid}")
|
||||
iz = next(i for i, s in enumerate(unbekannten_labels) if str(s) == f"Z{pid}")
|
||||
pts[pid] = (float(x_vektor[ix]), float(x_vektor[iy]), float(x_vektor[iz]))
|
||||
except:
|
||||
continue
|
||||
|
||||
fig = go.Figure()
|
||||
|
||||
# 2. Beobachtungen (Linien im Raum)
|
||||
# Wir zeichnen hier einfach alle Verbindungen
|
||||
x_line, y_line, z_line = [], [], []
|
||||
for bl in beobachtungs_labels:
|
||||
p_in_l = [pid for pid in pts if f"_{pid}" in str(bl) or str(bl).startswith(f"{pid}_")]
|
||||
if len(p_in_l) >= 2:
|
||||
p1, p2 = pts[p_in_l[0]], pts[p_in_l[1]]
|
||||
x_line.extend([p1[0], p2[0], None])
|
||||
y_line.extend([p1[1], p2[1], None])
|
||||
z_line.extend([p1[2], p2[2], None])
|
||||
|
||||
fig.add_trace(go.Scatter3d(
|
||||
x=x_line, y=y_line, z=z_line,
|
||||
mode='lines', line=dict(color='gray', width=2),
|
||||
name='Beobachtungen'
|
||||
))
|
||||
|
||||
# 3. Punkte & "Fehler-Kreuze" (als Ersatz für Ellipsoide)
|
||||
# Ein echtes 3D-Ellipsoid ist grafisch schwer, daher zeichnen wir 3 Achsen
|
||||
for pid, coord in pts.items():
|
||||
# Hier könnten wir die echten Halbachsen aus der 3D-Eigenwertanalyse nutzen
|
||||
# Für den Anfang plotten wir die Standardabweichungen sX, sY, sZ als Kreuz
|
||||
fig.add_trace(go.Scatter3d(
|
||||
x=[coord[0]], y=[coord[1]], z=[coord[2]],
|
||||
mode='markers+text', text=[pid],
|
||||
marker=dict(size=4, color='black'), name=f'Punkt {pid}'
|
||||
))
|
||||
|
||||
# 4. Layout
|
||||
fig.update_layout(
|
||||
scene=dict(
|
||||
xaxis_title='X [m]',
|
||||
yaxis_title='Y [m]',
|
||||
zaxis_title='Z [m]',
|
||||
aspectmode='data' # WICHTIG: Verhältnisse 1:1:1 bewahren
|
||||
),
|
||||
width=1000, height=800,
|
||||
title="Geozentrisches Netz in 3D"
|
||||
)
|
||||
|
||||
fig.show()
|
||||
|
||||
# Aufruf
|
||||
|
||||
Reference in New Issue
Block a user