112 lines
4.1 KiB
Python
112 lines
4.1 KiB
Python
import sympy as sp
|
||
from dataclasses import dataclass, field
|
||
from typing import Dict, Tuple
|
||
|
||
@dataclass
|
||
class StochastischesModellApriori:
|
||
sigma_beob: Iterable[float] #σ der einzelnen Beobachtung
|
||
group_beob: Iterable[int] #Gruppenzugehörigkeit jeder Beobachtung (Distanz, Richtung, GNSS, Nivellement,...,)
|
||
sigma0_groups: Dict[int, float] = field(default_factory=dict) #σ0² für jede Gruppe
|
||
|
||
|
||
def __post_init__(self):
|
||
self.sigma_beob = sp.Matrix(list(self.sigma_beob)) #Spaltenvektor
|
||
self.group_beob = sp.Matrix(list(self.group_beob)) #Spaltenvektor
|
||
|
||
if self.sigma_beob.rows != self.group_beob.rows:
|
||
raise ValueError("sigma_obs und group_ids müssen gleich viele Einträge haben.")
|
||
|
||
unique_groups = sorted({int(g) for g in self.group_beob}) #jede Beobachtungsgruppe wird genau einmal berücksichtigt
|
||
for g in unique_groups:
|
||
if g not in self.sigma0_groups: #Fehlende Gruppen mit σ_0j^2 = 1.0
|
||
self.sigma0_groups[g] = 1.0
|
||
|
||
|
||
@property
|
||
def n_beob(self) -> int:
|
||
return int(self.sigma_beob.rows)
|
||
|
||
|
||
def aufstellen_Qll_P(self) -> Tuple[sp.Matrix, sp.Matrix]:
|
||
n = self.n_beob
|
||
Q_ll = sp.zeros(n, n)
|
||
P = sp.zeros(n, n)
|
||
|
||
for i in range(n):
|
||
sigma_i = self.sigma_beob[i, 0] #σ-Wert der i-ten Beobachtung holen
|
||
g = int(self.group_beob[i, 0]) #Gruppenzugehörigkeit der Beobachtung bestimmen
|
||
sigma0_sq = self.sigma0_groups[g] #Den Varianzfaktor der Gruppe holen
|
||
q_ii = sigma_i**2 #σ² berechnen
|
||
Q_ll[i, i] = q_ii #Diagonale
|
||
P[i, i] = 1 / (sigma0_sq * q_ii) #durch VKS nicht mehr P=Qll^-1
|
||
return Q_ll, P
|
||
|
||
|
||
@staticmethod
|
||
def redundanz_pro_beobachtung(A: sp.Matrix, P: sp.Matrix) -> sp.Matrix:
|
||
n_beob = P.rows #Anzahl der Beobachtungen (Zeilen in P)
|
||
n_param = A.cols #Anzahl der Unbekannten (Spalten in A)
|
||
|
||
sqrtP = sp.zeros(n_beob, n_beob) #Wurzel von P (der Diagonale)
|
||
for i in range(n_beob):
|
||
sqrtP[i, i] = sp.sqrt(P[i, i])
|
||
|
||
A_tilde = sqrtP * A
|
||
|
||
M = (A_tilde.T * A_tilde).inv()
|
||
|
||
r_vec = sp.zeros(n_beob, 1)
|
||
|
||
for i in range(n_beob):
|
||
a_i = A_tilde.row(i) # 1 × n_param
|
||
a_i_row = sp.Matrix([a_i]) # explizit 1×n-Matrix
|
||
r_i = 1 - (a_i_row * M * a_i_row.T)[0, 0]
|
||
r_vec[i, 0] = r_i
|
||
|
||
return r_vec
|
||
|
||
|
||
def varianzkomponentenschaetzung(
|
||
self,
|
||
v: sp.Matrix, # Residuenvektor (n × 1)
|
||
A: sp.Matrix, # Designmatrix
|
||
) -> Dict[int, float]:
|
||
|
||
if v.rows != self.n_beob:
|
||
raise ValueError("Länge von v passt nicht zur Anzahl Beobachtungen im Modell.")
|
||
|
||
# Aktuelle Gewichte
|
||
Q_ll, P = self.aufstellen_Qll_P()
|
||
|
||
# Redundanzzahlen pro Beobachtung
|
||
r_vec = self.redundanz_pro_beobachtung(A, P)
|
||
|
||
new_sigma0_sq: Dict[int, float] = {}
|
||
|
||
# Für jede Gruppe j:
|
||
unique_groups = sorted({int(g) for g in self.group_beob})
|
||
|
||
for g in unique_groups:
|
||
# Indizes der Beobachtungen in dieser Gruppe
|
||
idx = [i for i in range(self.n_beob) if int(self.group_beob[i, 0]) == g]
|
||
if not idx:
|
||
continue
|
||
|
||
# v_j, P_j, r_j extrahieren
|
||
v_j = sp.Matrix([v[i, 0] for i in idx]) # (m_j × 1)
|
||
P_j = sp.zeros(len(idx), len(idx))
|
||
r_j = 0
|
||
for ii, i in enumerate(idx):
|
||
P_j[ii, ii] = P[i, i]
|
||
r_j += r_vec[i, 0]
|
||
|
||
# σ̂_j^2 = (v_jᵀ P_j v_j) / r_j
|
||
sigma_hat_j_sq = (v_j.T * P_j * v_j)[0, 0] / r_j
|
||
|
||
# als float rausgeben, kann man aber auch symbolisch lassen
|
||
new_sigma0_sq[g] = float(sigma_hat_j_sq)
|
||
return new_sigma0_sq
|
||
|
||
def update_sigma0(self, new_sigma0_sq: Dict[int, float]) -> None:
|
||
for g, val in new_sigma0_sq.items():
|
||
self.sigma0_groups[int(g)] = float(val) |