{ "cells": [ { "cell_type": "code", "id": "initial_id", "metadata": { "collapsed": true, "ExecuteTime": { "end_time": "2025-12-23T08:39:33.840440Z", "start_time": "2025-12-23T08:39:33.100346Z" } }, "source": [ "# Hier werden alle verwendeten Pythonmodule importiert\n", "import Datenbank\n", "import Import\n", "import importlib\n", "import Koordinatentransformationen\n", "import sqlite3\n", "import Funktionales_Modell\n", "import Berechnungen\n", "import Parameterschaetzung\n", "import Stochastisches_Modell\n", "from Stochastisches_Modell import StochastischesModell\n", "import Export\n", "import Netzqualität_Genauigkeit" ], "outputs": [], "execution_count": 1 }, { "metadata": { "ExecuteTime": { "end_time": "2025-12-23T08:39:34.656550Z", "start_time": "2025-12-23T08:39:34.647503Z" } }, "cell_type": "code", "source": [ "importlib.reload(Datenbank)\n", "importlib.reload(Import)\n", "# Anlegen der Datenbank, wenn nicht vorhanden\n", "pfad_datenbank = r\"Campusnetz.db\"\n", "Datenbank.Datenbank_anlegen(pfad_datenbank)\n", "\n", "# Import vervollständigen\n", "imp = Import.Import(pfad_datenbank)\n", "db_zugriff = Datenbank.Datenbankzugriff(pfad_datenbank)" ], "id": "82d514cd426db78b", "outputs": [], "execution_count": 2 }, { "metadata": { "ExecuteTime": { "end_time": "2025-12-23T08:39:35.391343Z", "start_time": "2025-12-23T08:39:35.385408Z" } }, "cell_type": "code", "source": [ "# Import der Koordinatendatei(en) vom Tachymeter\n", "pfad_datei = r\"Daten\\campsnetz_koordinaten_bereinigt.csv\"\n", "imp.import_koordinaten_lh_tachymeter(pfad_datei)" ], "id": "d3bce3991a8962dc", "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Der Import wurde abgebrochen, weil mindestens ein Teil der Punktnummern aus der Datei Daten\\campsnetz_koordinaten_bereinigt.csv bereits in der Datenbank vorhanden ist. Bitte in der Datei ändern und Import wiederholen.\n" ] } ], "execution_count": 3 }, { "metadata": { "ExecuteTime": { "end_time": "2025-12-23T08:39:35.987063Z", "start_time": "2025-12-23T08:39:35.973195Z" } }, "cell_type": "code", "source": [ "importlib.reload(Datenbank)\n", "db_zugriff = Datenbank.Datenbankzugriff(pfad_datenbank)\n", "# Transformationen in ETRS89 / DREF91 Realisierung 2025\n", "print(db_zugriff.get_koordinaten(\"naeherung_lh\"))" ], "id": "196ff0c8f8b5aea1", "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'10009': Matrix([\n", "[1000.0],\n", "[2000.0],\n", "[ 100.0]]), '10006': Matrix([\n", "[ 1000.0],\n", "[2032.6863],\n", "[ 99.5825]]), '10010': Matrix([\n", "[1011.8143],\n", "[1973.3252],\n", "[ 99.9259]]), '10018': Matrix([\n", "[1008.5759],\n", "[ 1942.762],\n", "[ 100.2553]]), '10008': Matrix([\n", "[979.7022],\n", "[1991.401],\n", "[ 99.732]]), '10005': Matrix([\n", "[ 966.5154],\n", "[2014.6496],\n", "[ 99.72]]), '10003': Matrix([\n", "[ 908.4312],\n", "[1996.1248],\n", "[ 99.7403]]), '10004': Matrix([\n", "[ 954.1536],\n", "[2021.6822],\n", "[ 99.4916]]), '10007': Matrix([\n", "[ 921.7481],\n", "[1973.6201],\n", "[ 99.9176]]), '10001': Matrix([\n", "[ 833.9439],\n", "[1978.3737],\n", "[ 99.8946]]), '10002': Matrix([\n", "[ 875.9684],\n", "[1998.5174],\n", "[ 99.5867]]), '10016': Matrix([\n", "[ 928.2783],\n", "[1944.0082],\n", "[ 100.0459]]), '10011': Matrix([\n", "[844.9567],\n", "[1891.157],\n", "[ 99.8117]]), '10026': Matrix([\n", "[1020.0059],\n", "[1913.8703],\n", "[ 100.3059]]), '10027': Matrix([\n", "[1016.9451],\n", "[1866.2914],\n", "[ 100.3251]]), '10043': Matrix([\n", "[1031.2077],\n", "[1822.4739],\n", "[ 100.3035]]), '10044': Matrix([\n", "[ 1025.976],\n", "[1782.4835],\n", "[ 100.5461]]), '10021': Matrix([\n", "[ 992.7607],\n", "[1904.8854],\n", "[ 100.3533]]), '10020': Matrix([\n", "[ 984.6187],\n", "[1903.3601],\n", "[ 100.3423]]), '10024': Matrix([\n", "[ 997.4831],\n", "[1881.7862],\n", "[ 100.3032]]), '10025': Matrix([\n", "[996.3241],\n", "[1866.844],\n", "[100.4102]]), '10022': Matrix([\n", "[990.0679],\n", "[1896.536],\n", "[100.2194]]), '10023': Matrix([\n", "[ 987.3223],\n", "[1889.8762],\n", "[ 100.343]]), '10019': Matrix([\n", "[ 962.6387],\n", "[1902.3565],\n", "[ 99.9772]]), '10033': Matrix([\n", "[ 964.0191],\n", "[1860.8023],\n", "[ 99.8551]]), '10017': Matrix([\n", "[ 931.6761],\n", "[1900.9945],\n", "[ 99.9572]]), '10052': Matrix([\n", "[ 1037.875],\n", "[1757.2999],\n", "[ 100.2737]]), '10042': Matrix([\n", "[1017.3489],\n", "[1803.0742],\n", "[ 100.3441]]), '10053': Matrix([\n", "[1033.3758],\n", "[1723.4258],\n", "[ 100.2774]]), '10037': Matrix([\n", "[ 966.2253],\n", "[1774.2051],\n", "[ 99.9957]]), '10040': Matrix([\n", "[ 990.8832],\n", "[1780.9678],\n", "[ 100.1677]]), '10041': Matrix([\n", "[993.2769],\n", "[1812.031],\n", "[100.4749]]), '10038': Matrix([\n", "[ 958.1899],\n", "[1804.7135],\n", "[ 100.0741]]), '10051': Matrix([\n", "[1008.9811],\n", "[1750.1838],\n", "[ 100.288]]), '10036': Matrix([\n", "[ 948.6403],\n", "[1763.5807],\n", "[ 100.0063]]), '10035': Matrix([\n", "[ 910.1265],\n", "[1768.0099],\n", "[ 100.0781]]), '10039': Matrix([\n", "[ 960.3884],\n", "[1820.0543],\n", "[ 100.0983]]), '10059': Matrix([\n", "[1049.2587],\n", "[1662.5451],\n", "[ 100.0148]]), '10050': Matrix([\n", "[1010.0246],\n", "[1726.2445],\n", "[ 100.1493]]), '10013': Matrix([\n", "[900.9076],\n", "[1902.873],\n", "[ 99.7911]]), '10028': Matrix([\n", "[ 853.9608],\n", "[1815.7417],\n", "[ 99.7793]]), '10012': Matrix([\n", "[ 895.3032],\n", "[1924.1523],\n", "[ 99.8758]]), '10014': Matrix([\n", "[ 913.9706],\n", "[1918.7731],\n", "[ 99.8872]]), '10031': Matrix([\n", "[ 937.1557],\n", "[1855.2805],\n", "[ 99.8479]]), '10015': Matrix([\n", "[ 912.5157],\n", "[1937.6471],\n", "[ 99.9834]]), '10032': Matrix([\n", "[ 954.6732],\n", "[1845.9356],\n", "[ 99.724]]), '10030': Matrix([\n", "[ 908.4749],\n", "[1828.8008],\n", "[ 99.5581]]), '10029': Matrix([\n", "[ 909.3343],\n", "[1814.8767],\n", "[ 99.5486]]), '10034': Matrix([\n", "[ 860.2357],\n", "[1758.9282],\n", "[ 99.737]]), '10045': Matrix([\n", "[867.2324],\n", "[1705.063],\n", "[ 99.7214]]), '10049': Matrix([\n", "[ 985.2561],\n", "[1715.2109],\n", "[ 99.9965]]), '10048': Matrix([\n", "[ 957.3889],\n", "[1716.2949],\n", "[ 99.7212]]), '10047': Matrix([\n", "[ 929.5334],\n", "[1712.6429],\n", "[ 99.6076]]), '10046': Matrix([\n", "[ 910.663],\n", "[1716.0969],\n", "[ 99.5459]]), '10057': Matrix([\n", "[969.6876],\n", "[1655.597],\n", "[ 99.7039]]), '10055': Matrix([\n", "[ 922.4731],\n", "[1647.7452],\n", "[ 99.4658]]), '10054': Matrix([\n", "[ 860.4481],\n", "[1636.6722],\n", "[ 99.7093]]), '10058': Matrix([\n", "[1013.2592],\n", "[1646.6356],\n", "[ 99.8513]]), '10056': Matrix([\n", "[ 939.9763],\n", "[1636.4179],\n", "[ 99.4027]])}\n" ] } ], "execution_count": 4 }, { "metadata": { "ExecuteTime": { "end_time": "2025-12-23T08:39:36.705490Z", "start_time": "2025-12-23T08:39:36.690491Z" } }, "cell_type": "code", "source": [ "importlib.reload(Datenbank)\n", "db_zugriff = Datenbank.Datenbankzugriff(pfad_datenbank)\n", "# Transformationen in ETRS89 / DREF91 Realisierung 2025\n", "print(db_zugriff.get_koordinaten(\"naeherung_us\"))" ], "id": "3989b7b41874c16a", "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'10009': Matrix([\n", "[3794767.4719546097],\n", "[ 546740.0869962516],\n", "[ 5080165.952124462]]), '10006': Matrix([\n", "[3794766.3557482935],\n", "[ 546707.6385009313],\n", "[5080169.7334700795]]), '10010': Matrix([\n", "[3794758.6366199246],\n", "[ 546767.6665772106],\n", "[5080169.4644999765]]), '10018': Matrix([\n", "[3794762.2481267513],\n", "[ 546797.6912507551],\n", "[ 5080163.980380166]]), '10008': Matrix([\n", "[3794783.8581],\n", "[ 546746.6347],\n", "[5080152.7404]]), '10005': Matrix([\n", "[3794793.841662743],\n", "[546722.3209011297],\n", "[5080147.930942906]]), '10003': Matrix([\n", "[3794841.051609108],\n", "[546735.1152754558],\n", "[5080111.543399332]]), '10004': Matrix([\n", "[3794803.4594055074],\n", "[ 546714.1406417021],\n", "[ 5080141.382390101]]), '10007': Matrix([\n", "[3794831.046531049],\n", "[546758.7254701178],\n", "[5080116.663324944]]), '10001': Matrix([\n", "[3794901.5252],\n", "[ 546745.559],\n", "[5080065.7672]]), '10002': Matrix([\n", "[3794866.9711],\n", "[ 546729.5958],\n", "[5080092.6364]]), '10016': Matrix([\n", "[3794826.658374741],\n", "[546788.7275390101],\n", "[5080116.868237535]]), '10011': Matrix([\n", "[3794894.922579663],\n", "[546833.1159754294],\n", "[5080061.151341954]]), '10026': Matrix([\n", "[3794753.8595],\n", "[ 546827.4296],\n", "[5080167.0938]]), '10027': Matrix([\n", "[3794757.591261769],\n", "[546874.3314003296],\n", "[5080159.317534195]]), '10043': Matrix([\n", "[3794747.2737986287],\n", "[ 546919.1497828952],\n", "[ 5080162.149716094]]), '10044': Matrix([\n", "[3794752.6696],\n", "[ 546958.3218],\n", "[5080154.2579]]), '10021': Matrix([\n", "[3794776.0295716925],\n", "[ 546833.7406948799],\n", "[ 5080150.012973846]]), '10020': Matrix([\n", "[ 3794782.610580881],\n", "[ 546834.470509102],\n", "[5080145.0361413695]]), '10024': Matrix([\n", "[3794772.816135807],\n", "[ 546857.095708699],\n", "[5080149.834714163]]), '10025': Matrix([\n", "[3794774.2085619094],\n", "[ 546871.8107307912],\n", "[ 5080147.359175114]]), '10022': Matrix([\n", "[3794778.3371531744],\n", "[ 546841.7501872958],\n", "[ 5080147.275074134]]), '10023': Matrix([\n", "[3794780.7952114563],\n", "[ 546848.1012091675],\n", "[ 5080144.924922213]]), '10019': Matrix([\n", "[3794800.0946706245],\n", "[ 546833.3239614451],\n", "[ 5080131.724532257]]), '10033': Matrix([\n", "[3794800.0160474544],\n", "[ 546874.6524563388],\n", "[ 5080127.204744104]]), '10017': Matrix([\n", "[3794825.016154114],\n", "[546831.6998861503],\n", "[5080113.374792286]]), '10052': Matrix([\n", "[3794743.6262089056],\n", "[ 546984.415934838],\n", "[ 5080157.831166813]]), '10042': Matrix([\n", "[ 3794758.957179171],\n", "[ 546937.0599021759],\n", "[5080151.6103044115]]), '10053': Matrix([\n", "[ 3794748.14608301],\n", "[547017.5748381803],\n", "[5080150.930072506]]), '10037': Matrix([\n", "[3794800.5693],\n", "[ 546960.7477],\n", "[ 5080117.665]]), '10040': Matrix([\n", "[3794780.720877459],\n", "[546956.4249913145],\n", "[5080133.161471092]]), '10041': Matrix([\n", "[3794778.153328699],\n", "[ 546925.877928891],\n", "[5080138.722313838]]), '10038': Matrix([\n", "[3794806.3233483736],\n", "[ 546929.7308726012],\n", "[ 5080116.89880491]]), '10051': Matrix([\n", "[3794767.0574626415],\n", "[ 546988.6993708528],\n", "[ 5080139.997874675]]), '10036': Matrix([\n", "[3794815.0546409036],\n", "[ 546969.5966706082],\n", "[ 5080106.064114862]]), '10035': Matrix([\n", "[3794845.948751911],\n", "[ 546961.512678588],\n", "[5080084.087510971]]), '10039': Matrix([\n", "[3794804.1623731344],\n", "[ 546914.7316360716],\n", "[ 5080120.139242563]]), '10059': Matrix([\n", "[3794736.9649],\n", "[ 547079.4678],\n", "[5080152.3224]]), '10050': Matrix([\n", "[3794766.7719544796],\n", "[ 547012.5266236273],\n", "[ 5080137.484970744]]), '10013': Matrix([\n", "[3794849.6087244693],\n", "[ 546826.8685540904],\n", "[ 5080095.43002485]]), '10028': Matrix([\n", "[3794889.7348],\n", "[ 546908.7636],\n", "[5080056.9381]]), '10012': Matrix([\n", "[3794853.6002710722],\n", "[ 546805.2364847381],\n", "[ 5080094.889461209]]), '10014': Matrix([\n", "[3794838.7464],\n", "[ 546812.3658],\n", "[ 5080105.2]]), '10031': Matrix([\n", "[3794821.7594477106],\n", "[ 546877.5480584177],\n", "[ 5080110.746046175]]), '10015': Matrix([\n", "[3794839.4650256806],\n", "[ 546793.5165545414],\n", "[5080106.7712153485]]), '10032': Matrix([\n", "[3794807.848210704],\n", "[546888.4861254627],\n", "[5080119.745908576]]), '10030': Matrix([\n", "[3794845.353156385],\n", "[546901.0274418414],\n", "[5080090.356531718]]), '10029': Matrix([\n", "[3794845.026354165],\n", "[546914.9167077399],\n", "[5080089.099946169]]), '10034': Matrix([\n", "[3794886.104894752],\n", "[546965.6987415539],\n", "[ 5080053.40592357]]), '10045': Matrix([\n", "[3794881.900452307],\n", "[547019.7835874384],\n", "[5080050.715777841]]), '10049': Matrix([\n", "[3794786.8907962884],\n", "[ 547021.0765699627],\n", "[ 5080121.444681106]]), '10048': Matrix([\n", "[3794809.106679632],\n", "[547017.3023106218],\n", "[5080105.014391199]]), '10047': Matrix([\n", "[3794831.5349817923],\n", "[ 547018.2393882351],\n", "[ 5080088.124038595]]), '10046': Matrix([\n", "[3794846.5803718665],\n", "[ 547012.9971156706],\n", "[ 5080077.440420756]]), '10057': Matrix([\n", "[3794800.819370702],\n", "[ 547078.671611169],\n", "[ 5080104.57270624]]), '10055': Matrix([\n", "[3794838.851977278],\n", "[ 547081.903863645],\n", "[5080075.698247853]]), '10054': Matrix([\n", "[3794889.0494],\n", "[ 547086.9874],\n", "[5080038.1528]]), '10058': Matrix([\n", "[3794766.1088143717],\n", "[ 547091.7542871874],\n", "[ 5080129.120881729]]), '10056': Matrix([\n", "[3794825.041003442],\n", "[547094.8115741647],\n", "[5080084.488768324]]), '0645': Matrix([\n", "[3793994.4529],\n", "[ 495758.0093],\n", "[5085958.2047]]), '0648': Matrix([\n", "[3762551.5682],\n", "[ 538424.8576],\n", "[5104809.1503]]), '0656': Matrix([\n", "[3794838.5802],\n", "[ 546995.3112],\n", "[5080116.5503]]), '0995': Matrix([\n", "[3794519.9177],\n", "[ 588539.9138],\n", "[5075743.9332]]), '1675': Matrix([\n", "[3813621.0427],\n", "[ 566004.8947],\n", "[ 5064056.93]]), 'ESTE': Matrix([\n", "[3816914.711],\n", "[ 507636.812],\n", "[5067733.467]]), 'GNA2': Matrix([\n", "[3767530.6335],\n", "[ 597990.0978],\n", "[5094563.5073]])}\n" ] } ], "execution_count": 5 }, { "metadata": { "ExecuteTime": { "end_time": "2025-12-23T08:39:37.518112Z", "start_time": "2025-12-23T08:39:37.508774Z" } }, "cell_type": "code", "source": [ "importlib.reload(Import)\n", "imp = Import.Import(pfad_datenbank)\n", "\n", "pfad_koordinaten_gnss = r\"Daten\\Koordinaten_OL_umliegend_bereinigt.csv\"\n", "# X, Y, Z der SAPOS-Stationen\n", "genauigkeit_sapos_referenzstationen = [0.05, 0.04, 0.09]\n", "\n", "imp.import_koordinaten_gnss(pfad_koordinaten_gnss, genauigkeit_sapos_referenzstationen)\n" ], "id": "7b6a359712fe858e", "outputs": [ { "data": { "text/plain": [ "'Import der Koordinaten aus stationärem GNSS abgeschlossen.'" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "execution_count": 6 }, { "metadata": { "ExecuteTime": { "end_time": "2025-12-23T08:50:23.112559Z", "start_time": "2025-12-23T08:50:23.042100Z" } }, "cell_type": "code", "source": [ "# Datumsgebende Koordinaten bestimmen\n", "importlib.reload(Datenbank)\n", "db_zugriff = Datenbank.Datenbankzugriff(pfad_datenbank)\n", "\n", "liste_koordinaten_x = [10026]\n", "liste_koordinaten_y = [10059]\n", "liste_koordinaten_z = [10028]\n", "liste_koordinaten_x_y_z = [10008, 10001]\n", "\n", "db_zugriff.set_datumskoordinaten(liste_koordinaten_x, liste_koordinaten_y, liste_koordinaten_z, liste_koordinaten_x_y_z)\n", "\n", "# Datumgebende Koordinaten entfernen\n", "liste_koordinaten_x = [10026]\n", "liste_koordinaten_y = [10059]\n", "liste_koordinaten_z = [10028]\n", "liste_koordinaten_x_y_z = [10001]\n", "\n", "db_zugriff.set_datumskoordinaten_to_neupunkte(liste_koordinaten_x, liste_koordinaten_y, liste_koordinaten_z, liste_koordinaten_x_y_z)" ], "id": "5f786757ba89d5d0", "outputs": [], "execution_count": 17 }, { "metadata": {}, "cell_type": "code", "source": [ "# ToDo: Sobald GNSS vorliegend Koordinaten im ETRS89 / DREF 91 (2025) daraus berechnen!\n", "#liste_koordinaten_naeherung_us = {\n", "# 10001: (3794874.984, 546741.752, 5080029.990),\n", "# 10002: (3794842.533, 546726.907, 5080071.133),\n", "# 10037: (3794774.148, 546955.423, 5080040.520),\n", "# 10044: (3794725.786, 546954.557, 5080084.411),\n", "#}\n", "\n", "\n", "#con = sqlite3.connect(pfad_datenbank)\n", "#cursor = con.cursor()\n", "#sql = \"\"\"\n", "#UPDATE Netzpunkte\n", "#SET naeherungx_us = ?, naeherungy_us = ?, naeherungz_us = ?\n", "#WHERE punktnummer = ?\n", "#\"\"\"\n", "#for punktnummer, (x, y, z) in #liste_koordinaten_naeherung_us.items():\n", "# cursor.execute(sql, (x, y, z, punktnummer))\n", "#con.commit()\n", "#cursor.close()\n", "#con.close()" ], "id": "f64d9c01318b40f1", "outputs": [], "execution_count": null }, { "metadata": {}, "cell_type": "code", "source": [ "# ToDo: Sobald GNSS-Daten vorliegen und die Berechnungen richtig sind, aufräumen!!!\n", "\n", "importlib.reload(Koordinatentransformationen)\n", "trafos = Koordinatentransformationen.Transformationen(pfad_datenbank)\n", "\n", "\n", "import numpy as np\n", "\n", "import itertools\n", "import numpy as np\n", "import sympy as sp\n", "\n", "db = Datenbank.Datenbankzugriff(pfad_datenbank)\n", "dict_ausgangssystem = db.get_koordinaten(\"naeherung_lh\", \"Dict\")\n", "dict_zielsystem = db.get_koordinaten(\"naeherung_us\", \"Dict\")\n", "\n", "gemeinsame_punktnummern = sorted(set(dict_ausgangssystem.keys()) & set(dict_zielsystem.keys()))\n", "anzahl_gemeinsame_punkte = len(gemeinsame_punktnummern)\n", "\n", "liste_punkte_ausgangssystem = [dict_ausgangssystem[i] for i in gemeinsame_punktnummern]\n", "liste_punkte_zielsystem = [dict_zielsystem[i] for i in gemeinsame_punktnummern]\n", "\n", "def dist(a, b):\n", " return float((a - b).norm())\n", "\n", "print(\"d(p2,p1)=\", dist(liste_punkte_ausgangssystem[1], liste_punkte_ausgangssystem[0]))\n", "print(\"d(P2,P1)=\", dist(liste_punkte_zielsystem[1], liste_punkte_zielsystem[0]))\n", "print(\"m0 ~\", dist(liste_punkte_zielsystem[1], liste_punkte_zielsystem[0]) /\n", " dist(liste_punkte_ausgangssystem[1], liste_punkte_ausgangssystem[0]))\n", "\n", "\n", "def dist(a, b):\n", " return float((a - b).norm())\n", "\n", "ratios = []\n", "pairs = list(itertools.combinations(range(len(liste_punkte_ausgangssystem)), 2))\n", "\n", "for i, j in pairs:\n", " d_loc = dist(liste_punkte_ausgangssystem[i], liste_punkte_ausgangssystem[j])\n", " d_ecef = dist(liste_punkte_zielsystem[i], liste_punkte_zielsystem[j])\n", " if d_loc > 1e-6:\n", " ratios.append(d_ecef / d_loc)\n", "\n", "print(\"Anzahl Ratios:\", len(ratios))\n", "print(\"min/mean/max:\", min(ratios), sum(ratios)/len(ratios), max(ratios))\n", "print(\"std:\", float(np.std(ratios)))\n", "\n", "S_loc = sum(liste_punkte_ausgangssystem, sp.Matrix([0,0,0])) / anzahl_gemeinsame_punkte\n", "S_ecef = sum(liste_punkte_zielsystem, sp.Matrix([0,0,0])) / anzahl_gemeinsame_punkte\n", "\n", "print(\"S_loc:\", S_loc)\n", "print(\"S_ecef:\", S_ecef)\n", "print(\"Delta:\", (S_ecef - S_loc).evalf(6))\n", "\n", "\n", "def dist(a, b):\n", " return float((a - b).norm())\n", "\n", "n = len(liste_punkte_ausgangssystem)\n", "\n", "scores = []\n", "for i in range(n):\n", " d_loc = []\n", " d_ecef = []\n", " for j in range(n):\n", " if i == j:\n", " continue\n", " d_loc.append(dist(liste_punkte_ausgangssystem[i], liste_punkte_ausgangssystem[j]))\n", " d_ecef.append(dist(liste_punkte_zielsystem[i], liste_punkte_zielsystem[j]))\n", "\n", " d_loc = np.array(d_loc)\n", " d_ecef = np.array(d_ecef)\n", "\n", " # Verhältnisvektor; robust gegen Nullschutz\n", " r = d_ecef / np.where(d_loc == 0, np.nan, d_loc)\n", "\n", " # Streuung der Ratios für Punkt i\n", " score = np.nanstd(r)\n", " scores.append(score)\n", "\n", "for pn, sc in sorted(zip(gemeinsame_punktnummern, scores), key=lambda x: -x[1]):\n", " print(pn, round(sc, 4))\n", "\n", "\n", "\n", "transformationsparameter = trafos.Helmerttransformation_Euler_Transformationsparameter_berechne()" ], "id": "21d60465e432c649", "outputs": [], "execution_count": null }, { "metadata": {}, "cell_type": "code", "source": [ "importlib.reload(Koordinatentransformationen)\n", "trafos = Koordinatentransformationen.Transformationen(pfad_datenbank)\n", "\n", "koordinaten_transformiert = trafos.Helmerttransformation(transformationsparameter)\n", "print(koordinaten_transformiert)" ], "id": "df0dcccb73299fcf", "outputs": [], "execution_count": null }, { "metadata": {}, "cell_type": "code", "source": [ "importlib.reload(Datenbank)\n", "db_zugriff = Datenbank.Datenbankzugriff(pfad_datenbank)\n", "\n", "db_zugriff.set_koordinaten(koordinaten_transformiert, \"naeherung_us\")" ], "id": "f6993d81c8a145dd", "outputs": [], "execution_count": null }, { "metadata": {}, "cell_type": "code", "source": [ "# Importieren der tachymetrischen Beobachtungen\n", "importlib.reload(Datenbank)\n", "db_zugriff = Datenbank.Datenbankzugriff(pfad_datenbank)\n", "\n", "db_zugriff.get_instrument_liste(\"Tachymeter\")\n", "db_zugriff.set_instrument(\"Tachymeter\", \"Trimble S9\")\n", "db_zugriff.get_instrument_liste(\"Tachymeter\")" ], "id": "e376b4534297016c", "outputs": [], "execution_count": null }, { "metadata": {}, "cell_type": "code", "source": [ "#Importieren der apriori Genauigkeitsinformationen\n", "#Zulässige Beobachtungsarten = \"Tachymeter_Richtung\", \"Tachymeter_Strecke\"\n", "# Wenn Beobachtungsart = \"Tachymeter_Richtung\" --> Übergabe in Milligon und nur Stabw_apriori_konst\n", "# Wenn Beobachtungsart = \"Tachymeter_Strecke\" --> Übergabe Stabw_apriori_konst in Millimeter und Stabw_apriori_streckenprop in ppm\n", "\n", "importlib.reload(Datenbank)\n", "db_zugriff = Datenbank.Datenbankzugriff(pfad_datenbank)\n", "importlib.reload(Berechnungen)\n", "\n", "db_zugriff.set_genauigkeiten(1, \"Tachymeter_Richtung\", 0.15)\n", "db_zugriff.set_genauigkeiten(1, \"Tachymeter_Strecke\", 0.8, 1)\n", "db_zugriff.set_genauigkeiten(1, \"Tachymeter_Zenitwinkel\", 0.15)" ], "id": "97e24245ce3398a2", "outputs": [], "execution_count": null }, { "metadata": {}, "cell_type": "code", "source": [ "# Importieren der tachymetrischen Beobachtungen\n", "importlib.reload(Import)\n", "imp = Import.Import(pfad_datenbank)\n", "\n", "pfad_datei_tachymeterbeobachtungen = r\"Daten\\campsnetz_beobachtungen_bereinigt.csv\"\n", "\n", "imp.import_beobachtungen_tachymeter(pfad_datei_tachymeterbeobachtungen, 1)" ], "id": "509e462917e98145", "outputs": [], "execution_count": null }, { "metadata": {}, "cell_type": "code", "source": [ "# Jacobimatrix aufstellen\n", "importlib.reload(Datenbank)\n", "db_zugriff = Datenbank.Datenbankzugriff(pfad_datenbank)\n", "\n", "# Parameter des GRS80-ellipsoids (Bezugsellipsoid des ETRS89 / DREF 91 (2025)\n", "# ToDo: Quelle mit möglichst genauen Parametern heraussuchen!\n", "a = 6378137.0 #m\n", "b = 63567552.314 #m\n", "\n", "importlib.reload(Funktionales_Modell)\n", "fm = Funktionales_Modell.FunktionalesModell(pfad_datenbank, a, b)\n", "\n", "#db_zugriff.get_beobachtungen_id_standpunkt_zielpunkt(\"tachymeter_distanz\")\n", "Jacobimatrix_symbolisch = fm.jacobi_matrix_symbolisch()[0]\n", "Jacobimatrix_symbolisch_liste_unbekannte = fm.jacobi_matrix_symbolisch()[1]\n", "Jacobimatrix_symbolisch_liste_beobachtungsvektor = fm.jacobi_matrix_symbolisch()[2]" ], "id": "d38939f7108e1788", "outputs": [], "execution_count": null }, { "metadata": {}, "cell_type": "code", "source": [ "importlib.reload(Datenbank)\n", "db_zugriff = Datenbank.Datenbankzugriff(pfad_datenbank)\n", "importlib.reload(Funktionales_Modell)\n", "fm = Funktionales_Modell.FunktionalesModell(pfad_datenbank, a, b)\n", "\n", "A_matrix_numerisch_iteration0 = fm.jacobi_matrix_zahlen_iteration_0(Jacobimatrix_symbolisch, \"naeherung_us\", Jacobimatrix_symbolisch_liste_unbekannte, Jacobimatrix_symbolisch_liste_beobachtungsvektor)" ], "id": "4a0b1790c65d59ee", "outputs": [], "execution_count": null }, { "metadata": {}, "cell_type": "code", "source": [ "importlib.reload(Funktionales_Modell)\n", "fm = Funktionales_Modell.FunktionalesModell(pfad_datenbank, a, b)\n", "\n", "beobachtungsvektor_numerisch = fm.beobachtungsvektor_numerisch(Jacobimatrix_symbolisch_liste_beobachtungsvektor)" ], "id": "38f698b6694bebe7", "outputs": [], "execution_count": null }, { "metadata": {}, "cell_type": "code", "source": [ "importlib.reload(Funktionales_Modell)\n", "fm = Funktionales_Modell.FunktionalesModell(pfad_datenbank, a, b)\n", "\n", "beobachtungsvektor_naeherung_symbolisch = fm.beobachtungsvektor_naeherung_symbolisch(Jacobimatrix_symbolisch_liste_beobachtungsvektor)" ], "id": "e5cca13bbb6b95c5", "outputs": [], "execution_count": null }, { "metadata": {}, "cell_type": "code", "source": [ "importlib.reload(Funktionales_Modell)\n", "fm = Funktionales_Modell.FunktionalesModell(pfad_datenbank, a, b)\n", "\n", "beobachtungsvektor_naeherung_numerisch_iteration0 = fm.beobachtungsvektor_naeherung_numerisch_iteration0(Jacobimatrix_symbolisch_liste_beobachtungsvektor, beobachtungsvektor_naeherung_symbolisch)" ], "id": "eb0452c52e7afa6b", "outputs": [], "execution_count": null }, { "metadata": {}, "cell_type": "code", "source": [ "# Auftstellen der Qll-Matrix\n", "importlib.reload(Stochastisches_Modell)\n", "stoch_modell = Stochastisches_Modell.StochastischesModell(A_matrix_numerisch_iteration0.rows)\n", "\n", "Qll_matrix_symbolisch = stoch_modell.Qll_symbolisch(pfad_datenbank, Jacobimatrix_symbolisch_liste_beobachtungsvektor)\n", "Qll_matrix_numerisch = stoch_modell.Qll_numerisch(pfad_datenbank, Qll_matrix_symbolisch,Jacobimatrix_symbolisch_liste_beobachtungsvektor)" ], "id": "40a3df8fe549c81", "outputs": [], "execution_count": null }, { "metadata": {}, "cell_type": "code", "source": "", "id": "8e2aa544249c9d29", "outputs": [], "execution_count": null }, { "metadata": {}, "cell_type": "code", "source": "", "id": "b479d3a946400ff6", "outputs": [], "execution_count": null }, { "metadata": {}, "cell_type": "code", "source": "", "id": "5d47e0771b22eb0b", "outputs": [], "execution_count": null }, { "metadata": {}, "cell_type": "code", "source": [ "importlib.reload(Funktionales_Modell)\n", "fm = Funktionales_Modell.FunktionalesModell(pfad_datenbank, a, b)\n", "\n", "importlib.reload(Parameterschaetzung)\n", "importlib.reload(Stochastisches_Modell)\n", "\n", "importlib.reload(Netzqualität_Genauigkeit)\n", "importlib.reload(Export)\n", "\n", "\n", "stoch_modell = Stochastisches_Modell.StochastischesModell(A_matrix_numerisch_iteration0.rows)\n", "\n", "dx = Parameterschaetzung.ausgleichung_global(A_matrix_numerisch_iteration0, fm.berechnung_dl(beobachtungsvektor_numerisch, beobachtungsvektor_naeherung_numerisch_iteration0), stoch_modell)[1]" ], "id": "f53849ee4757d5e8", "outputs": [], "execution_count": null }, { "metadata": {}, "cell_type": "code", "source": [ "# Von Fabian\n", "\n", "importlib.reload(Funktionales_Modell)\n", "fm = Funktionales_Modell.FunktionalesModell(pfad_datenbank, a, b)\n", "importlib.reload(Export)\n", "importlib.reload(Datenbank)\n", "\n", "unbekanntenvektor_symbolisch = (fm.unbekanntenvektor_symbolisch(Jacobimatrix_symbolisch_liste_unbekannte))\n", "unbekanntenvektor_numerisch_iteration0 = fm.unbekanntenvektor_numerisch(Jacobimatrix_symbolisch_liste_unbekannte, unbekanntenvektor_symbolisch)\n", "print(unbekanntenvektor_numerisch_iteration0)\n", "print(\"-----\")\n", "unbekanntenvektor_numerisch = fm.unbekanntenvektor_numerisch(Jacobimatrix_symbolisch_liste_unbekannte, unbekanntenvektor_symbolisch, dx, unbekanntenvektor_numerisch_iteration0)\n", "print(unbekanntenvektor_numerisch)" ], "id": "122dca077d1d267c", "outputs": [], "execution_count": null } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 5 }