Pythonfiles
This commit is contained in:
@@ -1,6 +1,6 @@
|
||||
import sympy as sp
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Dict, Tuple
|
||||
from typing import Dict, Tuple, Iterable
|
||||
|
||||
@dataclass
|
||||
class StochastischesModell:
|
||||
@@ -27,12 +27,12 @@ class StochastischesModell:
|
||||
return int(self.sigma_beob.rows)
|
||||
|
||||
|
||||
def aufstellen_Qll_P(self) -> Tuple[sp.Matrix, sp.Matrix]:
|
||||
def berechne_Qll_P(self) -> Tuple[sp.Matrix, sp.Matrix]:
|
||||
n = self.n_beob
|
||||
Q_ll = sp.zeros(n, n)
|
||||
P = sp.zeros(n, n)
|
||||
|
||||
for i in range(self.n):
|
||||
for i in range(self.n_beob):
|
||||
sigma_i = self.sigma_beob[i, 0] #σ-Wert der i-ten Beobachtung holen
|
||||
g = int(self.group_beob[i, 0]) #Gruppenzugehörigkeit der Beobachtung bestimmen
|
||||
sigma0_sq = self.sigma0_groups[g] #Den Varianzfaktor der Gruppe holen
|
||||
@@ -42,45 +42,45 @@ class StochastischesModell:
|
||||
return Q_ll, P
|
||||
|
||||
|
||||
@staticmethod
|
||||
def redundanz_pro_beobachtung(A, P):
|
||||
n = P.rows
|
||||
sqrtP = sp.zeros(n, n)
|
||||
for i in range(n):
|
||||
sqrtP[i, i] = sp.sqrt(P[i, i])
|
||||
def berechne_Qvv(self, A: sp.Matrix, Q_ll: sp.Matrix, Q_xx: sp.Matrix) -> sp.Matrix:
|
||||
Q_vv = Q_ll - A * Q_xx * A.T
|
||||
return Q_vv #Kofaktormatrix der Beobachtungsresiduen
|
||||
|
||||
A_tilde = sqrtP * A
|
||||
M = (A_tilde.T * A_tilde).inv()
|
||||
|
||||
def berechne_R(self, Q_vv: sp.Matrix, P: sp.Matrix) -> sp.Matrix:
|
||||
R = Q_vv * P
|
||||
return R #Redundanzmatrix
|
||||
|
||||
|
||||
def berechne_r(self, R: sp.Matrix) -> sp.Matrix:
|
||||
n = R.rows
|
||||
r = sp.zeros(n, 1)
|
||||
for i in range(n):
|
||||
a_i = sp.Matrix([A_tilde.row(i)])
|
||||
r[i] = 1 - (a_i * M * a_i.T)[0]
|
||||
return r
|
||||
r[i, 0] = R[i, i]
|
||||
return r #Redundanzanteile
|
||||
|
||||
|
||||
def varianzkomponenten(self, v, A) -> Dict[int, float]:
|
||||
_, P = self.aufstellen_Qll_P()
|
||||
r_obs = self.redundanz_pro_beobachtung(A, P)
|
||||
gruppen = sorted(set(int(g) for g in self.group_beob))
|
||||
|
||||
sigma_hat = {}
|
||||
|
||||
def berechne_vks(self,v: sp.Matrix, P: sp.Matrix, r: sp.Matrix) -> Dict[int, float]:
|
||||
if v.rows != self.n_beob:
|
||||
raise ValueError("v passt nicht zur Anzahl der Beobachtungen.")
|
||||
gruppen = sorted({int(g) for g in self.group_beob})
|
||||
sigma_gruppen: Dict[int, float] = {}
|
||||
for g in gruppen:
|
||||
idx = [i for i in range(self.n) if int(self.group_beob[i]) == g]
|
||||
idx = [i for i in range(self.n_beob)
|
||||
if int(self.group_beob[i, 0]) == g]
|
||||
if not idx:
|
||||
continue
|
||||
|
||||
v_i = sp.Matrix([v[i] for i in idx])
|
||||
|
||||
P_i = sp.zeros(len(idx))
|
||||
for k, j in enumerate(idx):
|
||||
P_i[k, k] = P[j, j]
|
||||
|
||||
r_g = sum(r_obs[j] for j in idx)
|
||||
|
||||
sigma_hat[g] = float((v_i.T * P_i * v_i)[0] / r_g)
|
||||
return sigma_hat
|
||||
v_g = sp.Matrix([v[i, 0] for i in idx])
|
||||
P_g = sp.zeros(len(idx), len(idx))
|
||||
for k, i_beob in enumerate(idx):
|
||||
P_g[k, k] = P[i_beob, i_beob]
|
||||
r_g = sum(r[i_beob, 0] for i_beob in idx)
|
||||
sigma_gruppe_g = (v_g.T * P_g * v_g)[0, 0] / r_g
|
||||
sigma_gruppen[g] = float(sigma_gruppe_g)
|
||||
return sigma_gruppen
|
||||
|
||||
|
||||
def update_sigma(self, sigma_hat_dict):
|
||||
for g, val in sigma_hat_dict.items():
|
||||
self.sigma0_groups[g] = float(val)
|
||||
def update_sigma0_von_vks(self, sigma_hat: Dict[int, float]) -> None:
|
||||
for g, val in sigma_hat.items():
|
||||
self.sigma0_groups[int(g)] = float(val)
|
||||
Reference in New Issue
Block a user