Pythonfiles
This commit is contained in:
@@ -0,0 +1,26 @@
|
|||||||
|
import sympy as sp
|
||||||
|
|
||||||
|
#für Varianzkomponentenschätzung
|
||||||
|
MAX_ITER = 10
|
||||||
|
TOL = 1e-3 # 0.1%.
|
||||||
|
|
||||||
|
for loop in range(MAX_ITER):
|
||||||
|
|
||||||
|
Q_ll, P = modell.aufstellen_Qll_P()
|
||||||
|
|
||||||
|
N = A.T * P * A
|
||||||
|
n_vec = A.T * P * l
|
||||||
|
dx = N.LUsolve(n_vec)
|
||||||
|
|
||||||
|
v = l - A * dx
|
||||||
|
|
||||||
|
sigma_hat = modell.varianzkomponenten(v, A)
|
||||||
|
|
||||||
|
print(f"Iteration {loop+1}, σ̂² Gruppen:", sigma_hat)
|
||||||
|
|
||||||
|
# Prüfen: ist jede Komponente ≈ 1?
|
||||||
|
if all(abs(val - 1) < TOL for val in sigma_hat.values()):
|
||||||
|
print("Konvergenz erreicht ✔")
|
||||||
|
break
|
||||||
|
|
||||||
|
modell.update_sigma(sigma_hat)
|
||||||
@@ -3,7 +3,7 @@ from dataclasses import dataclass, field
|
|||||||
from typing import Dict, Tuple
|
from typing import Dict, Tuple
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class StochastischesModellApriori:
|
class StochastischesModell:
|
||||||
sigma_beob: Iterable[float] #σ der einzelnen Beobachtung
|
sigma_beob: Iterable[float] #σ der einzelnen Beobachtung
|
||||||
group_beob: Iterable[int] #Gruppenzugehörigkeit jeder Beobachtung (Distanz, Richtung, GNSS, Nivellement,...,)
|
group_beob: Iterable[int] #Gruppenzugehörigkeit jeder Beobachtung (Distanz, Richtung, GNSS, Nivellement,...,)
|
||||||
sigma0_groups: Dict[int, float] = field(default_factory=dict) #σ0² für jede Gruppe
|
sigma0_groups: Dict[int, float] = field(default_factory=dict) #σ0² für jede Gruppe
|
||||||
@@ -32,7 +32,7 @@ class StochastischesModellApriori:
|
|||||||
Q_ll = sp.zeros(n, n)
|
Q_ll = sp.zeros(n, n)
|
||||||
P = sp.zeros(n, n)
|
P = sp.zeros(n, n)
|
||||||
|
|
||||||
for i in range(n):
|
for i in range(self.n):
|
||||||
sigma_i = self.sigma_beob[i, 0] #σ-Wert der i-ten Beobachtung holen
|
sigma_i = self.sigma_beob[i, 0] #σ-Wert der i-ten Beobachtung holen
|
||||||
g = int(self.group_beob[i, 0]) #Gruppenzugehörigkeit der Beobachtung bestimmen
|
g = int(self.group_beob[i, 0]) #Gruppenzugehörigkeit der Beobachtung bestimmen
|
||||||
sigma0_sq = self.sigma0_groups[g] #Den Varianzfaktor der Gruppe holen
|
sigma0_sq = self.sigma0_groups[g] #Den Varianzfaktor der Gruppe holen
|
||||||
@@ -43,70 +43,44 @@ class StochastischesModellApriori:
|
|||||||
|
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def redundanz_pro_beobachtung(A: sp.Matrix, P: sp.Matrix) -> sp.Matrix:
|
def redundanz_pro_beobachtung(A, P):
|
||||||
n_beob = P.rows #Anzahl der Beobachtungen (Zeilen in P)
|
n = P.rows
|
||||||
n_param = A.cols #Anzahl der Unbekannten (Spalten in A)
|
sqrtP = sp.zeros(n, n)
|
||||||
|
for i in range(n):
|
||||||
sqrtP = sp.zeros(n_beob, n_beob) #Wurzel von P (der Diagonale)
|
|
||||||
for i in range(n_beob):
|
|
||||||
sqrtP[i, i] = sp.sqrt(P[i, i])
|
sqrtP[i, i] = sp.sqrt(P[i, i])
|
||||||
|
|
||||||
A_tilde = sqrtP * A
|
A_tilde = sqrtP * A
|
||||||
|
|
||||||
M = (A_tilde.T * A_tilde).inv()
|
M = (A_tilde.T * A_tilde).inv()
|
||||||
|
|
||||||
r_vec = sp.zeros(n_beob, 1)
|
r = sp.zeros(n, 1)
|
||||||
|
for i in range(n):
|
||||||
for i in range(n_beob):
|
a_i = sp.Matrix([A_tilde.row(i)])
|
||||||
a_i = A_tilde.row(i) # 1 × n_param
|
r[i] = 1 - (a_i * M * a_i.T)[0]
|
||||||
a_i_row = sp.Matrix([a_i]) # explizit 1×n-Matrix
|
return r
|
||||||
r_i = 1 - (a_i_row * M * a_i_row.T)[0, 0]
|
|
||||||
r_vec[i, 0] = r_i
|
|
||||||
|
|
||||||
return r_vec
|
|
||||||
|
|
||||||
|
|
||||||
def varianzkomponentenschaetzung(
|
def varianzkomponenten(self, v, A) -> Dict[int, float]:
|
||||||
self,
|
_, P = self.aufstellen_Qll_P()
|
||||||
v: sp.Matrix, # Residuenvektor (n × 1)
|
r_obs = self.redundanz_pro_beobachtung(A, P)
|
||||||
A: sp.Matrix, # Designmatrix
|
gruppen = sorted(set(int(g) for g in self.group_beob))
|
||||||
) -> Dict[int, float]:
|
|
||||||
|
|
||||||
if v.rows != self.n_beob:
|
sigma_hat = {}
|
||||||
raise ValueError("Länge von v passt nicht zur Anzahl Beobachtungen im Modell.")
|
|
||||||
|
|
||||||
# Aktuelle Gewichte
|
for g in gruppen:
|
||||||
Q_ll, P = self.aufstellen_Qll_P()
|
idx = [i for i in range(self.n) if int(self.group_beob[i]) == g]
|
||||||
|
|
||||||
# Redundanzzahlen pro Beobachtung
|
v_i = sp.Matrix([v[i] for i in idx])
|
||||||
r_vec = self.redundanz_pro_beobachtung(A, P)
|
|
||||||
|
|
||||||
new_sigma0_sq: Dict[int, float] = {}
|
P_i = sp.zeros(len(idx))
|
||||||
|
for k, j in enumerate(idx):
|
||||||
|
P_i[k, k] = P[j, j]
|
||||||
|
|
||||||
# Für jede Gruppe j:
|
r_g = sum(r_obs[j] for j in idx)
|
||||||
unique_groups = sorted({int(g) for g in self.group_beob})
|
|
||||||
|
|
||||||
for g in unique_groups:
|
sigma_hat[g] = float((v_i.T * P_i * v_i)[0] / r_g)
|
||||||
# Indizes der Beobachtungen in dieser Gruppe
|
return sigma_hat
|
||||||
idx = [i for i in range(self.n_beob) if int(self.group_beob[i, 0]) == g]
|
|
||||||
if not idx:
|
|
||||||
continue
|
|
||||||
|
|
||||||
# v_j, P_j, r_j extrahieren
|
|
||||||
v_j = sp.Matrix([v[i, 0] for i in idx]) # (m_j × 1)
|
|
||||||
P_j = sp.zeros(len(idx), len(idx))
|
|
||||||
r_j = 0
|
|
||||||
for ii, i in enumerate(idx):
|
|
||||||
P_j[ii, ii] = P[i, i]
|
|
||||||
r_j += r_vec[i, 0]
|
|
||||||
|
|
||||||
# σ̂_j^2 = (v_jᵀ P_j v_j) / r_j
|
def update_sigma(self, sigma_hat_dict):
|
||||||
sigma_hat_j_sq = (v_j.T * P_j * v_j)[0, 0] / r_j
|
for g, val in sigma_hat_dict.items():
|
||||||
|
self.sigma0_groups[g] = float(val)
|
||||||
# als float rausgeben, kann man aber auch symbolisch lassen
|
|
||||||
new_sigma0_sq[g] = float(sigma_hat_j_sq)
|
|
||||||
return new_sigma0_sq
|
|
||||||
|
|
||||||
def update_sigma0(self, new_sigma0_sq: Dict[int, float]) -> None:
|
|
||||||
for g, val in new_sigma0_sq.items():
|
|
||||||
self.sigma0_groups[int(g)] = float(val)
|
|
||||||
Reference in New Issue
Block a user