Merge remote-tracking branch 'origin/main'

This commit is contained in:
2025-12-15 16:11:54 +01:00
3 changed files with 126 additions and 6 deletions

View File

@@ -0,0 +1,109 @@
from dataclasses import dataclass
from typing import Sequence, List, Dict
import sympy as sp
@dataclass
class Zuverlaessigkeit:
def redundanzanalyse(self, r_vec: Sequence[float]) -> Dict[str, object]:
r_s = [sp.sympify(r) for r in r_vec]
EVi = [float(r * 100) for r in r_s]
klassen = [self.klassifiziere_ri(float(r)) for r in r_s]
return {
"r_i": [float(r) for r in r_s],
"EVi": EVi,
"klassen": klassen,
"r_sum": float(sum(r_s)),
"min_r": float(min(r_s)),
"max_r": float(max(r_s)),
}
def klassifiziere_ri(self, ri: float) -> str:
if ri < 0.01:
return "nicht kontrollierbar"
elif ri < 0.10:
return "schlecht kontrollierbar"
elif ri < 0.30:
return "ausreichend kontrollierbar"
elif ri < 0.70:
return "gut kontrollierbar"
else:
return "nahezu vollständig redundant"
def globaltest(self, sigma0_hat: float, sigma0_apriori: float, F_krit: float):
s_hat = sp.sympify(sigma0_hat)
s0 = sp.sympify(sigma0_apriori)
Fk = sp.sympify(F_krit)
T_G = (s_hat**2) / (s0**2)
H0 = bool(T_G <= Fk)
return {
"T_G": float(T_G),
"F_krit": float(Fk),
"H0_angenommen": H0,
}
def data_snooping(
self,
v: Sequence[float],
Qv_diag: Sequence[float],
r_vec: Sequence[float],
sigma0_hat: float,
k: float,
) -> List[Dict[str, float | bool]]:
v_s = [sp.sympify(x) for x in v]
Qv_s = [sp.sympify(q) for q in Qv_diag]
r_s = [sp.sympify(r) for r in r_vec]
s0 = sp.sympify(sigma0_hat)
k_s = sp.sympify(k)
results = []
for vi, Qvi, ri in zip(v_s, Qv_s, r_s):
s_vi = s0 * sp.sqrt(Qvi)
NV_i = sp.Abs(vi) / s_vi
if ri == 0:
GRZW_i = sp.oo
else:
GRZW_i = (s_vi / ri) * k_s
auff = bool(NV_i > k_s)
results.append({
"v_i": float(vi),
"Qv_i": float(Qvi),
"r_i": float(ri),
"s_vi": float(s_vi),
"NV_i": float(NV_i),
"GRZW_i": float(GRZW_i if GRZW_i != sp.oo else float("inf")),
"auffällig": auff,
})
return results
def aeussere_zuverlaessigkeit_EF(self, r_vec: Sequence[float], delta0: float):
delta = sp.sympify(delta0)
EF_list = []
for ri in r_vec:
ri_s = sp.sympify(ri)
if ri_s == 0:
EF = sp.oo
else:
EF = sp.sqrt((1 - ri_s) / ri_s) * delta
EF_list.append(float(EF if EF != sp.oo else float("inf")))
return EF_list

View File

@@ -23,7 +23,7 @@ def iterative_ausgleichung(
v = l - A * dx #Residuenvektor v
Q_vv = modell.berechne_Qvv(A, Q_ll, Q_xx) #Kofaktormatrix der Verbesserungen Qvv
Q_vv = modell.berechne_Qvv(A, P, Q_xx) #Kofaktormatrix der Verbesserungen Qvv
R = modell.berechne_R(Q_vv, P) #Redundanzmatrix R
r = modell.berechne_r(R) #Redundanzanteile als Vektor r
@@ -44,10 +44,21 @@ def iterative_ausgleichung(
"sigma0_groups": dict(modell.sigma0_groups),
})
if all(abs(val - 1.0) < tol for val in sigma_hat.values()): #Abbruchkriterium
print(f"Konvergenz nach {it + 1} Iterationen erreicht.")
break
# --- Abbruchkriterium ---
if sigma_hat:
max_rel_change = 0.0
for g, new_val in sigma_hat.items():
old_val = modell.sigma0_groups.get(g, 1.0)
if old_val != 0:
rel = abs(new_val - old_val) / abs(old_val)
max_rel_change = max(max_rel_change, rel)
if max_rel_change < tol:
print(f"Konvergenz nach {it + 1} Iterationen erreicht (max. rel. Änderung = {max_rel_change:.2e}).")
modell.update_sigma0_von_vks(sigma_hat)
break
# Varianzfaktoren für nächste Iteration übernehmen
modell.update_sigma0_von_vks(sigma_hat)
return {

View File

@@ -42,8 +42,8 @@ class StochastischesModell:
return Q_ll, P
def berechne_Qvv(self, A: sp.Matrix, Q_ll: sp.Matrix, Q_xx: sp.Matrix) -> sp.Matrix:
Q_vv = Q_ll - A * Q_xx * A.T
def berechne_Qvv(self, A: sp.Matrix, P: sp.Matrix, Q_xx: sp.Matrix) -> sp.Matrix:
Q_vv = P.inv() - A * Q_xx * A.T
return Q_vv #Kofaktormatrix der Beobachtungsresiduen