Merge remote-tracking branch 'origin/main'
This commit is contained in:
109
Netzqualität_Zuverlässigkeit.py
Normal file
109
Netzqualität_Zuverlässigkeit.py
Normal file
@@ -0,0 +1,109 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import Sequence, List, Dict
|
||||
import sympy as sp
|
||||
|
||||
|
||||
@dataclass
|
||||
class Zuverlaessigkeit:
|
||||
|
||||
def redundanzanalyse(self, r_vec: Sequence[float]) -> Dict[str, object]:
|
||||
r_s = [sp.sympify(r) for r in r_vec]
|
||||
EVi = [float(r * 100) for r in r_s]
|
||||
klassen = [self.klassifiziere_ri(float(r)) for r in r_s]
|
||||
|
||||
return {
|
||||
"r_i": [float(r) for r in r_s],
|
||||
"EVi": EVi,
|
||||
"klassen": klassen,
|
||||
"r_sum": float(sum(r_s)),
|
||||
"min_r": float(min(r_s)),
|
||||
"max_r": float(max(r_s)),
|
||||
}
|
||||
|
||||
|
||||
|
||||
def klassifiziere_ri(self, ri: float) -> str:
|
||||
if ri < 0.01:
|
||||
return "nicht kontrollierbar"
|
||||
elif ri < 0.10:
|
||||
return "schlecht kontrollierbar"
|
||||
elif ri < 0.30:
|
||||
return "ausreichend kontrollierbar"
|
||||
elif ri < 0.70:
|
||||
return "gut kontrollierbar"
|
||||
else:
|
||||
return "nahezu vollständig redundant"
|
||||
|
||||
|
||||
|
||||
def globaltest(self, sigma0_hat: float, sigma0_apriori: float, F_krit: float):
|
||||
s_hat = sp.sympify(sigma0_hat)
|
||||
s0 = sp.sympify(sigma0_apriori)
|
||||
Fk = sp.sympify(F_krit)
|
||||
|
||||
T_G = (s_hat**2) / (s0**2)
|
||||
H0 = bool(T_G <= Fk)
|
||||
|
||||
return {
|
||||
"T_G": float(T_G),
|
||||
"F_krit": float(Fk),
|
||||
"H0_angenommen": H0,
|
||||
}
|
||||
|
||||
|
||||
|
||||
def data_snooping(
|
||||
self,
|
||||
v: Sequence[float],
|
||||
Qv_diag: Sequence[float],
|
||||
r_vec: Sequence[float],
|
||||
sigma0_hat: float,
|
||||
k: float,
|
||||
) -> List[Dict[str, float | bool]]:
|
||||
|
||||
v_s = [sp.sympify(x) for x in v]
|
||||
Qv_s = [sp.sympify(q) for q in Qv_diag]
|
||||
r_s = [sp.sympify(r) for r in r_vec]
|
||||
s0 = sp.sympify(sigma0_hat)
|
||||
k_s = sp.sympify(k)
|
||||
|
||||
results = []
|
||||
|
||||
for vi, Qvi, ri in zip(v_s, Qv_s, r_s):
|
||||
|
||||
s_vi = s0 * sp.sqrt(Qvi)
|
||||
NV_i = sp.Abs(vi) / s_vi
|
||||
|
||||
if ri == 0:
|
||||
GRZW_i = sp.oo
|
||||
else:
|
||||
GRZW_i = (s_vi / ri) * k_s
|
||||
|
||||
auff = bool(NV_i > k_s)
|
||||
|
||||
results.append({
|
||||
"v_i": float(vi),
|
||||
"Qv_i": float(Qvi),
|
||||
"r_i": float(ri),
|
||||
"s_vi": float(s_vi),
|
||||
"NV_i": float(NV_i),
|
||||
"GRZW_i": float(GRZW_i if GRZW_i != sp.oo else float("inf")),
|
||||
"auffällig": auff,
|
||||
})
|
||||
|
||||
return results
|
||||
|
||||
|
||||
|
||||
def aeussere_zuverlaessigkeit_EF(self, r_vec: Sequence[float], delta0: float):
|
||||
delta = sp.sympify(delta0)
|
||||
EF_list = []
|
||||
for ri in r_vec:
|
||||
ri_s = sp.sympify(ri)
|
||||
if ri_s == 0:
|
||||
EF = sp.oo
|
||||
else:
|
||||
EF = sp.sqrt((1 - ri_s) / ri_s) * delta
|
||||
EF_list.append(float(EF if EF != sp.oo else float("inf")))
|
||||
|
||||
return EF_list
|
||||
@@ -23,7 +23,7 @@ def iterative_ausgleichung(
|
||||
|
||||
v = l - A * dx #Residuenvektor v
|
||||
|
||||
Q_vv = modell.berechne_Qvv(A, Q_ll, Q_xx) #Kofaktormatrix der Verbesserungen Qvv
|
||||
Q_vv = modell.berechne_Qvv(A, P, Q_xx) #Kofaktormatrix der Verbesserungen Qvv
|
||||
R = modell.berechne_R(Q_vv, P) #Redundanzmatrix R
|
||||
r = modell.berechne_r(R) #Redundanzanteile als Vektor r
|
||||
|
||||
@@ -44,10 +44,21 @@ def iterative_ausgleichung(
|
||||
"sigma0_groups": dict(modell.sigma0_groups),
|
||||
})
|
||||
|
||||
if all(abs(val - 1.0) < tol for val in sigma_hat.values()): #Abbruchkriterium
|
||||
print(f"Konvergenz nach {it + 1} Iterationen erreicht.")
|
||||
break
|
||||
# --- Abbruchkriterium ---
|
||||
if sigma_hat:
|
||||
max_rel_change = 0.0
|
||||
for g, new_val in sigma_hat.items():
|
||||
old_val = modell.sigma0_groups.get(g, 1.0)
|
||||
if old_val != 0:
|
||||
rel = abs(new_val - old_val) / abs(old_val)
|
||||
max_rel_change = max(max_rel_change, rel)
|
||||
|
||||
if max_rel_change < tol:
|
||||
print(f"Konvergenz nach {it + 1} Iterationen erreicht (max. rel. Änderung = {max_rel_change:.2e}).")
|
||||
modell.update_sigma0_von_vks(sigma_hat)
|
||||
break
|
||||
|
||||
# Varianzfaktoren für nächste Iteration übernehmen
|
||||
modell.update_sigma0_von_vks(sigma_hat)
|
||||
|
||||
return {
|
||||
|
||||
@@ -42,8 +42,8 @@ class StochastischesModell:
|
||||
return Q_ll, P
|
||||
|
||||
|
||||
def berechne_Qvv(self, A: sp.Matrix, Q_ll: sp.Matrix, Q_xx: sp.Matrix) -> sp.Matrix:
|
||||
Q_vv = Q_ll - A * Q_xx * A.T
|
||||
def berechne_Qvv(self, A: sp.Matrix, P: sp.Matrix, Q_xx: sp.Matrix) -> sp.Matrix:
|
||||
Q_vv = P.inv() - A * Q_xx * A.T
|
||||
return Q_vv #Kofaktormatrix der Beobachtungsresiduen
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user